Submit an Article
Become a reviewer

Search articles for by keywords:
true triaxial tests

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-11
  • Date accepted
    2025-01-28
  • Date published
    2025-03-21

Research and development of technology for the construction of snow airfields for accommodating wheeled aircraft in Antarctica

Article preview

Construction of a new wintering complex at the Antarctic Vostok Station required prompt delivery of builders and mechanics to Progress Station to move them further to the work area. To solve this major logistical issue, a new landing site, later named Zenit, certified for accommodating heavy wheeled aircraft, was prepared in the Progress Station area from March to August 2022. Its snow pavement slab with a total area of 350 thousand m2 is from 100 to 120 cm high. It was made by applying snow layers with their subsequent compaction by a specially designed compaction platform for snow airfields suitable for heavy wheeled aircraft. As a result, the pavement has a surface hardness of at least 1 MPa. The layer from 30 to 60 cm has a hardness of at least 0.8 MPa, and the bottom layer at least 0.6 MPa. The first Il-76TD-90VD aircraft of the Russian company Volga-Dnepr was accommodated to the new runway on 7 November 2022. The aircraft landed in normal mode. The depth of the chassis wheels track after landing did not exceed 3 cm. The research provided in-depth understanding of the mechanisms for forming the supporting base of the runway from snow and ice in Antarctica. The experience gained can be used to solve similar issues in the Far North.

How to cite: Polyakov S.P., Popov S.V. Research and development of technology for the construction of snow airfields for accommodating wheeled aircraft in Antarctica // Journal of Mining Institute. 2025. p. EDN EKGJNF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-06-01
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

Analyzing friction bolts load bearing capacity in varying rock masses: an experimental study in Anti Atlas Imiter silver mining region, Morocco

Article preview

This study analyzes how key factors impact friction rock bolt capacity using standard pull-out tests, focusing on 39 mm diameter, 180 cm long split-tube bolts. We investigate bolt performance dependence on rock mass rating (RMR), time after installation, schistosity orientation, surface roughness, and installation quality. The aim is optimizing bolt design and implementation for enhanced underground stability and safety. Results show RMR strongly exponentially correlates with pull-out resistance; higher quality rock masses increase capacity. Anchorage capacity significantly rises over time, especially for RMR above 70. Increasing angle between bolt axis and rock foliation from 0 to 90° boosts pull-out response. Reducing borehole diameter below bolt diameter grows bolt-ground friction. Empirical models estimate load capacity based on RMR, time, orientation, diameter, roughness and installation quality. These reliably predict bolt performance from site conditions, significantly improving on basic RMR methods. Experiments provide practical friction bolt behavior insights for typical rock masses. The data-driven analysis ensures models are applicable to actual underground scenarios. This enables tailored optimization of bolting configurations and supports. Methodologies presented should improve safety, efficiency and cost-effectiveness of reinforced mining and tunneling. Overall, this study fundamentally furthers friction bolt performance understanding, enabling superior underground support design.

How to cite: Amine S., Latifa O., Mohammed S., Youssef Z., Anas B. Analyzing friction bolts load bearing capacity in varying rock masses: an experimental study in Anti Atlas Imiter silver mining region, Morocco // Journal of Mining Institute. 2024. Vol. 268. p. 669-682.
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions

Article preview

The necessity of improving the drives of the sucker-rod hydraulic pump units (SRHP), operated in conditions of marginal and complicated wells, is substantiated. For complicated oil production conditions, it is promising to use the SRHP drive, which makes it possible to select and set rational operating modes for downhole equipment. The results of comparative tests of conventional mechanical and hydraulic actuators SRHP with pneumatic and electrodynamic balancing types are presented. A generalized indicator for evaluating the effectiveness of the advanced SRHP drives functioning, the energy efficiency coefficient, is proposed. It has been experimentally proven that the use of the SRHP drive with pneumatic balancing is characterized by low energy efficiency of the well fluid production process. The use of the tested SRHP hydraulic drive made it possible to successfully eliminate asphalt, resin, and paraffin deposits and minimize the well downtime. The results of the tests of the traditional SRHP mechanical drive and the hydraulic drive with electrodynamic balancing showed a satisfactory energy efficiency of the latter. The advantage of the SRHP drive with electrodynamic balancing is the simplicity of the design of the hydraulic part. The process of energy regeneration during the drive control system operation causes an increase in the reactive power component in the oil field network and the appearance of harmonic interference that adversely affects the consumers operation. Technical solutions aimed at improving the operation energy efficiency and increasing the operating time of SRHP drives in the conditions of marginal and complicated wells are proposed. The methodological bases for assessing the economic efficiency of the introduction of the advanced SRHP drives are given.

How to cite: Shishlyannikov D.I., Zverev V.Y., Zvonareva A.G., Frolov S.A., Ivanchenko A.A. Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions // Journal of Mining Institute. 2023. Vol. 261. p. 349-362. EDN XLRCWN
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-09-01
  • Date accepted
    2022-10-07
  • Date published
    2022-12-29

Parameter determination of the method of directional unloading of the reservoir based on physical modelling on a true triaxial loading setup

Article preview

The article presents a theoretical and experimental substantiation of the method of directional unloading of the reservoir in fields with low-permeability reservoirs. The relevance of the article is due to the reduction of hydrocarbon resources in modern conditions and the need to create new efficient environmentally friendly technologies to develop hydrocarbon deposits with hard-to-recover reserves, primarily with low-permeability reservoirs. The results of a theoretical study of the stress-strain state in the vicinity of a well, both cased and open, are presented. They are necessary to develop programs for laboratory testing of core specimens from the studied fields. A technique for physical modelling of deformation processes in the bottomhole zone with a decrease in pressure at the well bottom in a true triaxial loading unit is described in order to determine the parameters of the process impact on the formation reservoir, leading to an increase in well productivity. The method was applied to the conditions of the low-permeability reservoir at the Verkhneviluchanskoye oil and gas condensate field in the southwest of the Republic of Sakha (Yakutia). Expe-rimental studies were carried out on a unique scientific unit for true triaxial loading, created at the IPMech RAS, the Triaxial Independent Loading Test System. The directional unloading method was adapted for the studied field, the process parameters of successful application of the method were determined: the bottomhole design, the drawdown values necessary to increase the permeability of the bottomhole formation zone.

How to cite: Karev V.I., Kovalenko Y.F., Khimulia V.V., Shevtsov N.I. Parameter determination of the method of directional unloading of the reservoir based on physical modelling on a true triaxial loading setup // Journal of Mining Institute. 2022. Vol. 258. p. 906-914. DOI: 10.31897/PMI.2022.95
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-03-25
  • Date accepted
    2022-09-06
  • Date published
    2022-12-29

Autoclave modeling of corrosion processes occurring in a gas pipeline during transportation of an unprepared multiphase medium containing CO2

Article preview

The problem of selecting a method for ensuring the reliability of the unprepared fluid transport facilities of an unprepared fluid in the presence of carbon dioxide is considered. Carbon dioxide corrosion is one of the dangerous types of damage to field and main pipelines. It has been shown that dynamic autoclave tests should be carried out during staged laboratory tests in order to determine the intensity of carbon dioxide corrosion and to select the optimal method of protection. A hypothesis about the imperfection of the existing generally accepted approaches to dynamic corrosion testing has been put forward and confirmed. A test procedure based on the use of an autoclave with an overhead stirrer, developed using elements of mathematical modeling, is proposed. The flows created in the autoclave provide corrosive wear of the sample surface similar to the internal surfaces elements wear of the pipelines piping of gas condensate wells. The autoclave makes it possible to simulate the effect of the organic phase on the flow rate and the nature of corrosion damage to the metal surface, as well as the effect of the stirrer rotation speed and, accordingly, the shear stress of the cross section on the corrosion rate in the presence/absence of a corrosion inhibitor. The given results of staged tests make it possible to judge the high efficiency of the developed test procedure.

How to cite: Shaposhnikov N.О., Golubev I.A., Khorobrov S.V., Kolotiy A.I., Ioffe A.V., Revyakin V.А. Autoclave modeling of corrosion processes occurring in a gas pipeline during transportation of an unprepared multiphase medium containing CO2 // Journal of Mining Institute. 2022. Vol. 258. p. 915-923. DOI: 10.31897/PMI.2022.92
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-07
  • Date published
    2022-11-03

Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading

Article preview

One of the most reliable methods for assessing the physical and mechanical properties of rocks as a result of their destruction are laboratory tests using hard or servo-driven test presses. They allow to obtain reliable information about changes in these properties beyond the limit of compressive strength. The results of laboratory tests of rich sulfide ore samples are presented, which made it possible to obtain graphs of their extreme deformation. Both monolithic samples and samples with stress concentrators in the form of circular holes with a diameter of 3, 5 and 10 mm were tested. It was revealed that during the destruction of the samples, the modules of elasticity and deformation decrease by 1.5-2 times, and in the zone of residual strength – by 5-7 times.

How to cite: Gospodarikov A.P., Trofimov A.V., Kirkin A.P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading // Journal of Mining Institute. 2022. Vol. 256. p. 539-548. DOI: 10.31897/PMI.2022.87
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-09-29
  • Date accepted
    2022-05-11
  • Date published
    2022-07-13

Tensor compaction of porous rocks: theory and experimental verification

Article preview

Compaction in sedimentary basins has been traditionally regarded as a one-dimensional process that ignores inelastic deformation in directions orthogonal to the active load. This study presents new experiments with sandstone demonstrating the role of three-dimensional inelastic compaction in cyclic true triaxial compression. The experiments were carried out on the basis of a triaxial independent loading test system in the Laboratory of Geomechanics of the Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Science. The elastic moduli of the material were estimated from the stress-strain curves and the elastic deformations of the sample in each of the three directions were determined. Subtracting the elastic component from the total deformation allowed to show that inelastic compaction of the sandstone is observed in the direction of active loading, whereas in the orthogonal directions there is a expansion of the material. To describe the three-dimensional nature of the compaction, a generalization of Athy law to the tensor case is proposed, taking into account the role of the stress deviator. The compaction tensor and the kinetic equation to describe the evolution of inelastic deformation, starting from the moment of the load application are introduced. On the basis of experiments on cyclic multiaxial compression of sandstone, the identification and verification of the constructed model of tensor compaction were carried out. The possibility of not only qualitative, but also quantitative description of changes in inelastic deformation under complex cyclic triaxial compression is shown.

How to cite: Panteleev I.A., Lyakhovsky V., Mubassarova V.A., Karev V.I., Shevtsov N.I., Shalev E. Tensor compaction of porous rocks: theory and experimental verification // Journal of Mining Institute. 2022. Vol. 254. p. 234-243. DOI: 10.31897/PMI.2022.30
Mining
  • Date submitted
    2020-05-16
  • Date accepted
    2020-07-30
  • Date published
    2020-12-29

Results of the study of kinetic parameters of spontaneous combustion of coal dust

Article preview

The article is devoted to the study of the problem of spontaneous combustion of energy grades of coal not only during storage, but also during transportation. As the main samples for the study, the energy grades of SS and Zh coals were selected. The main task of the scientific research was to study the rate of cooling and heating of coal depending on their thermophysical parameters and environmental parameters. To solve this problem, the authors used both the author's installations designed to study the thermophysical parameters of the spontaneous combustion process (the Ya.S.Kiselev method), and the NETZSCH STA 449 F3 Jupiter synchronous thermal analysis device, the NETZSCH Proteus Termal Analysis software package. On the basis of a complex study of the spontaneous combustion process, the authors of the article obtained the kinetic characteristics of the spontaneous heating process (activation energy and pre-exponential multiplier). Nomograms of the permissible size of coal density of different types and shapes of accumulation depending on the ambient temperature are presented, practical recommendations for the prevention (avoidance) of spontaneous combustion of coal fuel are given.

How to cite: Rodionov V.A., Tursenev S.A., Skripnik I.L., Ksenofontov Y.G. Results of the study of kinetic parameters of spontaneous combustion of coal dust // Journal of Mining Institute. 2020. Vol. 246. p. 617-622. DOI: 10.31897/PMI.2020.6.3
Oil and gas
  • Date submitted
    2019-08-08
  • Date accepted
    2019-09-16
  • Date published
    2020-02-25

Testing of preformed particles polymer gel technology on core filtration models to limit water inflows

Article preview

In order to reduce watering of wells and equalize their injectivity profiles, the prospects of introducing PPG technology in Russian fields are considered, in which preformed particles polymer gel are pumped into the injection well. These particles, being a supersorbent based on polyacrylamide, absorb water, become elastic, which allows them to shrink and tear in narrow filtration channels. When the polymer is filtered along permeable layers saturated with water, polymer particles accumulate in waterlogged intervals and thus they form a polymer plug, which redistributes the filtration flows and increases the coverage of the formation by the process of oil displacement. More than 4000 downhole operations have been carried out in the fields of China and the USA using PPG technology by now. In domestic fields in Western Siberia, there is limited experience in applying a similar technology in high-temperature formations with low mineralization of formation water. Due to the absence of hydrolytic processes in polyacrylamide, well-known domestic compositions are not applicable due to the low absorption capacity in the conditions of low-temperature deposits with increased mineralization of formation water. The authors synthesized a polymer based on polyacrylamide by block polymerization, which allows to obtain a high absorption capacity, including for low-temperature formations with high mineralization of formation water, which is typical for Perm Territory fields. Filtration experiments were carried out on core models with the composition developed by the authors, this composition focused on low formation temperatures and high mineralization of formation water. As a result of the experiments, it was found that the swollen particles of the gel are able to pass into fractures with a diameter less than their own size at least 20 times. With a significant increase in the viscosity of the dispersion medium, the stability of the suspension increases. Particles of polymer gel have the necessary strength for injection in the field conditions. The fracture permeability during polymer injection decreases by several times and becomes comparable with the permeability of pore collectors.

How to cite: Ketova Y.A., Bai B., Khizhnyak G.P., Gladkikh Y.A., Galkin S.V. Testing of preformed particles polymer gel technology on core filtration models to limit water inflows // Journal of Mining Institute. 2020. Vol. 241. p. 91-96. DOI: 10.31897/PMI.2020.1.91
Mining
  • Date submitted
    2019-04-27
  • Date accepted
    2019-07-10
  • Date published
    2019-10-23

Estimation of Rock Mass Strength in Open-Pit Mining

Article preview

The paper presents results of an experimental study on strength characteristics of the rock mass as applied to the assessment of open-pit slope stability. Formulas have been obtained that describe a correlation between ultimate and residual strength of rock samples and residual shear strength along the weakening surface. A new method has been developed to calculate residual interface strength of the rock mass basing on data from the examination of small-scale monolith samples with opposing spherical indentors. A method has been proposed to estimate strength characteristics (structural weakening coefficients and internal friction angles) of the fractured near-slope rock mass. The method relies on test data from shattering small-scale monolith samples with spherical indentors, taking into ac- count contact conditions along the weakening surface, and can be applied in the field conditions. It is acceptable to use irregular-shaped samples in thetests.

How to cite: Pavlovich A.A., Korshunov V.A., Bazhukov A.A., Melnikov N.Y. Estimation of Rock Mass Strength in Open-Pit Mining // Journal of Mining Institute. 2019. Vol. 239. p. 502-509. DOI: 10.31897/PMI.2019.5.502
Mining
  • Date submitted
    2018-05-07
  • Date accepted
    2018-07-06
  • Date published
    2018-10-24

Hydraulic transportation of thickened tailings of iron ore processing at Kachkanarsky GOK based on results of laboratory and pilot tests of hydrotransport system

Article preview

The object of study is the system of hydrotransport of iron ore processing tailings at JSC «EVRAZ Kachkanarsky GOK». The aim of the work was to determine the parameters of the hydraulic transport of tailings of the iron ore enrichment at weight concentrations of the solid phase from 30 to 70 % and to develop recommendations for the industrial operation of hydraulic transport systems of highly concentrated slurries of the Tailing Facilities of the Kachkanarsky GOK. Laboratory studies of the parameters of hydrotransport of thickened tail pulps were carried out with the development of a calculation method; pilot tests of the hydrotransport system under the conditions of the Tailing Facilities of the Kachkanarsky GOK. It has been established that using polyurethane coatings on the inner surface of the slurry lines significantly (1.75 times) decrease the specific pressure loss on the hydrotransport of thickened fluids. This allows to significantly increase the range of transportation for placing tailings in the distant parts of the storage zone. The introduction of research results is in the project of reconstruction and development of the tailing facility of the TF of the Kachkanarsky GOK for the period 2018-2020. It is proposed to use the results of work in the project of reconstruction of the hydraulic transport system at the TF of the Kachkanarsky GOK by switching to the hydraulic transport of slurries thickened to weight concentrations of 35-40 % in the slurry pipes with an internal polyurethane coating, which will ensure energy saving in the hydraulic transport process.

How to cite: Aleksandrov V.I., Vasileva M.A. Hydraulic transportation of thickened tailings of iron ore processing at Kachkanarsky GOK based on results of laboratory and pilot tests of hydrotransport system // Journal of Mining Institute. 2018. Vol. 233. p. 471-479. DOI: 10.31897/PMI.2018.5.471
Geology
  • Date submitted
    2016-11-11
  • Date accepted
    2017-01-21
  • Date published
    2017-04-14

Conducting lithospheric heterogeneities as a criterion of predictive assessment for promising diamond areas (on the example of Siberian kimberlite province)

Article preview

Results of magnetotelluric tests, carried out in Siberian kimberlite province, are examined from the viewpoint of structural control over location of kimberlite fields and bunches of kimberlite pipes. It is demonstrated that the key factors controlling occurrence of kimberlite magmatism are: deep systems of rift-driven fractures; areas of their intersection within high-ohmic blocks of Earth crust; conducting permeable areas, located at the intersections of deep faults. Various-rank objects of kimberlite magmatism are characterized by a certain combination of geoelectric heterogeneities, differing in resistance, lateral sizes and depth. The province is situated within the boundaries, limited by isolines 180-220 km of current asthenosphere; kimberlite areas – within the contours of high-resistance regional heterogeneities. Fields and bunches of kimberlite pipes are concentrated within boundaries of conducting subvertical zones. These factors can be used as criteria of predictive assessment for promising diamond areas of the ancient platforms.

How to cite: Pospeeva E.V. Conducting lithospheric heterogeneities as a criterion of predictive assessment for promising diamond areas (on the example of Siberian kimberlite province) // Journal of Mining Institute. 2017. Vol. 224. p. 170-177. DOI: 10.18454/PMI.2017.2.170
Problems in geomechanics of technologeneous rock mass
  • Date submitted
    2009-07-23
  • Date accepted
    2009-09-09
  • Date published
    2010-04-22

Physical modeling of energy exchange in rock mass

Article preview

The cause of manifestation of dangerous dynamic phenomena, such as rock bursts, earthquakes, etc., appears to be the energy exchange in rock mass. The inaccessibility of rock mass for carrying out the full-scale observations has stimulated to study this problem with using the methods of laboratory modeling. Description is given to the substance of energy exchange in situ, the principles of its physical modeling in the laboratory, to the test equipment as well as to some results of our investigations.

How to cite: Lodus E.V., Goncharov E.V. Physical modeling of energy exchange in rock mass // Journal of Mining Institute. 2010. Vol. 185. p. 64-67.