-
Date submitted2024-05-30
-
Date accepted2024-10-14
-
Date published2024-11-12
Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths
The possibility of discovering oil and gas occurrences at great (more than 5 km) and super-great (more than 6 km) depths is considered in two aspects. The first one is the preservation conditions of large hydrocarbon accumulations forming at depths to 4 km and caused by different geological and tectonic processes occurring at great and super-great depths with partial oil-to-gas transformation. It was ascertained that among the factors controlling preservation of liquid and gaseous hydrocarbons are the temperature, pressure, subsidence rate (rate of temperature and pressure increase), time spent under ultrahigh thermobaric conditions, and initial composition of organic matter. The possibility of existence of liquid components of oil at great and super-great depths is characteristic of sedimentary basins of China, the Gulf of Mexico, the Santos and Campos basins on the Brazilian shelf, and in the Russian Federation it is most probable for the Caspian Depression, some submontane troughs and zones of intense accumulation of young sediments. Determination of critical temperatures and pressures of phase transitions and the onset of cracking is possible using the approach considered in the article, based on estimation of organic matter transformation degree, kinetic and thermobaric models taking into account the composition of hydrocarbon fluid. The second aspect is the estimation of composition of hydrocarbons associated with rocks forming at great depths or rocks transformed under conditions of critical temperatures and pressures. This aspect of considerable science intensity can hardly be considered as practically significant. The study focuses on the investigation of the possibilities of thermodynamic modelling and the use of alternative methods for studying the transformation degree of liquid formation fluid into components of the associated gas through the example of two areas with identified oil, condensate and gas accumulations.
-
Date submitted2024-04-25
-
Date accepted2024-09-24
-
Date published2024-11-12
Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography
Pyrolysis of organic matter with subsequent analysis of hydrocarbon composition of the resulting products allows obtaining multicomponent distribution spectra of the generation potential by the activation energies of reactions of kerogen transformation into hydrocarbons. Configuration of the spectra depends on the structure of kerogen and is individual for each type of organic matter. Studies of kerogen kinetics showed that the distribution of activation energies is unique for each oil source rocks. The kinetic model of thermal decomposition of kerogen of the same type, for example, marine planktonic (type II), can differ significantly in different sedimentary basins due to the multivariate relationship of chemical bonds and their reaction energy threshold. The developed method for calculating multicomponent kinetic spectra (four-component models are used) based on results of pyrolysis gas chromatography allows obtaining one of the most important elements of modelling the history of oil and gas generation in geological basins. Kinetic parameters of organic matter of oil and gas source rocks influence the onset time of generation and directly reflect differences in the composition and structure of different types of kerogens. The results of determining the kinetic parameters of two high-carbon source rocks occurring across the territory of three oil and gas basins are shown. Generation and updating of the data of kinetic models of certain oil and gas source rocks will increase the reliability of forecasting oil and gas potential using the basin modelling method.
-
Date submitted2024-04-22
-
Date accepted2024-09-24
-
Date published2024-11-12
On peculiarities of composition and properties of ancient hydrocarbon source rocks
Precambrian rocks are widespread within all continents of the Earth; that said, sedimentary associations of these deposits are of special interest in search for oil and gas fields. A wide range of paleontological, lithological and geochemical methods is utilized for conducting integrated geological-geochemical analysis and evaluating the initial hydrocarbon generating potential of organic matter of Precambrian source rocks. Investigated were peculiarities of depositional environments of the organic matter, specific features of its composition in sedimentary rocks and its generation characteristics. Own research efforts were performed in combination with generalization of other authors’ publications focused on Precambrian sequences enriched in organic matter – their occurrence, isotopic and biomarker characteristics and realization schemes of the hydrocarbon generation potential of Precambrian organic matter in the process of catagenesis. Geochemical peculiarities of initial organic matter are illustrated on various examples, type of the organic matter is determined together with the character of evolution of realization of its initial generation potential.
-
Date submitted2024-04-16
-
Date accepted2024-09-24
-
Date published2024-11-12
Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources
The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.
-
Date submitted2024-10-29
-
Date accepted2024-10-29
-
Date published2024-11-12
Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths
In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.
-
Date submitted2023-05-21
-
Date accepted2024-05-02
-
Date published2024-08-26
Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province
The study of high-carbon formations was instigated both by the decreasing raw material base of oil as a result of its extraction, and by the progress in development of low-permeability shale strata, primarily in the USA, Australia, and China. The most valuable formations occur in traditional hydrocarbon production areas – the West Siberian, Volga-Ural and Timan-Pechora, North Pre-Caucasian and Lena-Tunguska oil and gas provinces. Specific features of the Late Devonian-Early Carboniferous high-carbon formation occurring in the eastern marginal part of the East European Platform are: heterogeneous section due to intense progradation of the carbonate platform from west to east; succession of lithofacies environments that determined the unevenness of the primary accumulation and secondary distribution of organic matter (OM); possible migration or preservation in the source strata during the subsidence stages of the moving parts of bitumides, which determined the prospects for oil and gas potential. The distribution pattern of the present OM content was investigated depending on lithofacies conditions and lithological composition of rocks in the “Domanik type” Upper Devonian-Tournaisian deposits in the Timan-Pechora Province (TPP), its transformation degree to bring it to the initial content of organic carbon and further estimation of the share of stored “mobile oil” in oil and gas source formation. The study was based on the analysis of the data set on organic carbon content in core samples and natural exposures in the Ukhta Region in the Domanik-Tournaisian part of the section including more than 5,000 determinations presented in reports and publications of VNIGRI and VNIGNI and supplemented by pyrolytic and bituminological analyses associated with the results of microtomographic, macro- and lithological studies and descriptions of thin sections made at the Saint Petersburg Mining University. For each tectonic zone of the TPP within the investigated high-carbon intervals, the content of total volumes of organic carbon was determined. The data obtained allow estimating the residual mass of mobile bitumoids in a low-permeability matrix of the high-carbon formation.
-
Date submitted2023-08-14
-
Date accepted2023-12-27
-
Date published2024-12-25
Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons
In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.
-
Date submitted2022-05-12
-
Date accepted2022-11-17
-
Date published2023-04-25
Microbiological remediation of oil-contaminated soils
- Authors:
- Irina D. Sozina
- Aleksandr S. Danilov
Microbiological remediation is a promising technology for the elimination of environmental contamination by oil and petroleum products, based on the use of the metabolic potential of microorganisms. The issue of environmental contamination by crude oil and its refined products is relevant in the Russian Federation since the oil industry is one of the leading sectors of the country. Mechanical and physico-chemical methods of treatment are widely used to clean oil-contaminated soils. However, the methods belonging to these groups have a number of significant drawbacks, which actualizes the development of new methods (mainly biological), since they are more environmentally friendly, cost-effective, less labor-intensive, and do not require the use of technical capacities. Various bio-based products based on strains and consortia of microorganisms have been developed that have proven effectiveness. They include certain genera of bacteria, microscopic fungi, and microalgae, substances or materials acting as sorbents of biological agents and designed to retain them in the soil and increase the efficiency of bioremediation, as well as some nutrients. Statistical data, the most effective methods, and technologies, as well as cases of using microorganisms to restore oil-contaminated soils in various climatic conditions are presented.
-
Date submitted2022-08-20
-
Date accepted2022-11-17
-
Date published2022-12-29
Comparison of the approaches to assessing the compressibility of the pore space
- Authors:
- Vitaly S. Zhukov
- Yuri O. Kuzmin
Integral and differential approaches to determining the volumetric compression of rocks caused by changes in the stress state are considered. Changes in the volume of the pore space of rocks are analyzed with an increase in its all-round compression. Estimation of changes in the compressibility coefficients of reservoirs due to the development of fields is an urgent problem, since the spread in the values of compressibility factors reduces the adequacy of estimates of changes in the physical properties and subsidence of the earth's surface of developed fields and underground gas storages. This parameter is key in assessing the geodynamic consequences of the long-term development of hydrocarbon deposits and the operation of underground gas storage facilities. Approaches to the assessment differ in the use of cumulative (integral) or local (differential) changes in porosity with a change in effective pressure. It is shown that the coefficient of volumetric compressibility of pores calculated by the integral approach significantly exceeds its value calculated by the differential approach, which is due to the accumulative nature of pore compression with an increase in effective pressure. It is shown that the differential approach more accurately determines the value of the pore compressibility coefficient, since it takes into account in more detail the features of the change in effective pressure.
-
Date submitted2021-10-18
-
Date accepted2022-01-24
-
Date published2022-04-29
Development of a hydrocarbon completion system for wells with low bottomhole temperatures for conditions of oil and gas fields in Eastern Siberia
The paper presents the results of investigations on the influence of low bottomhole temperatures in the intervals of productive formations on the technological properties of solutions used for drilling and completion of wells in order to determine the possibility of increasing gas recovery coefficient at the field of the “Sila Sibiri” gas pipeline. The analysis of technological measures determining the quality of the productive horizon drilling-in was carried out. It was found out that the dispersion of bridging agent in the composition of the hydrocarbon-based drilling mud selected from the existing methods does not have significant influence on the change in the depth of filtrate penetration into the formation in conditions of low bottomhole temperatures. The main reason for the decrease in the near-bottomhole zone permeability was found out – the increase in plastic viscosity of the dispersion medium of the hydrocarbon-based drilling mud under the influence of low bottomhole temperatures. A destructor solution for efficient wellbore cleaning from hydrocarbon-based solution components in conditions of low bottomhole temperatures was developed. The paper presents the results of laboratory investigations of hydrocarbon-based drilling mud and the developed destructor solution, as well as its pilot field tests. The mechanism of interaction between the destructor solution and the filter cake of the hydrocarbon-based drilling mud ensuring the reduction of the skin factor in the conditions of the geological and hydrodynamic structure of Botuobinsky, Khamakinsky and Talakhsky horizons of the Chayandinskoye oil and gas condensate field has been scientifically substantiated.
-
Date submitted2021-05-31
-
Date accepted2021-10-18
-
Date published2021-12-16
Experimental evaluation of compressibility coefficients for fractures and intergranular pores of an oil and gas reservoir
- Authors:
- Vitaly S. Zhukov
- Yuri O. Kuzmin
The paper is devoted to studies of the volumetric response of rocks caused by changes in their stress state. Changes in the volume of fracture and intergranular components of the pore space based on measurements of the volume of pore fluid extruded from a rock sample with an increase in its all-round compression have been experimentally obtained and analyzed. Determination of the fracture and intergranular porosity components is based on the authors' earlier proposed method of their calculation using the values of longitudinal wave velocity and total porosity. The results of experimental and analytical studies of changes in porosity and its two components (intergranular and fractured) under the action of effective stresses are considered. This approach allowed the authors to estimate the magnitude of the range of changes in the volumetric compressibility of both intergranular pores and fractures in a representative collection of 37 samples of the Vendian-age sand reservoir of the Chayanda field. The method of separate estimation of the compressibility coefficients of fractures and intergranular pores is proposed, their values and dependence on the effective pressure are experimentally obtained. It is determined that the knowledge of the values of fracture and intergranular porosity volumetric compressibility will increase the reliability of estimates of changes in petrophysical parameters of oil and gas reservoirs caused by changes in the stress state during the development of hydrocarbon fields.
-
Date submitted2020-05-13
-
Date accepted2020-06-24
-
Date published2020-10-08
Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development
Modern trends in the global energy market linked to the Sustainable Development Goals often lead to the adoption of political decisions with little basis in fact. Stepping up the development of renewable energy sources is an economically questionable but necessary step in terms of its social and ecological effects. However, subsequent development of hydrogen infrastructure is, at the very least, a dangerous initiative. In connection with mentioned above, an attempt to examine hydrogen by conducting an integral assessment of its characteristics has been made in this article. As a result of the research conducted, the following conclusions concerning the potential of the widespread implementation of hydrogen in the power generation sector have been made: as a chemical element, it harms steel structures, which significantly impedes the selection of suitable materials; its physical and volume characteristics decrease the general efficiency of the energy system compared to similar hydrocarbon solutions; the hydrogen economy does not have the necessary foundation in terms of both physical infrastructure and market regulation mechanisms; the emergence of widely available hydrogen poses a danger for society due to its high combustibility. Following the results of the study, it was concluded that the existing pilot hydrogen projects are positive yet not scalable solutions for the power generation sector due to the lack of available technologies to construct large-scale and geographically distributed infrastructure and adequate international system of industry regulation. Thus, under current conditions, the risks of implementing such projects considerably exceed their potential ecological benefits.
-
Date submitted2019-07-11
-
Date accepted2019-08-25
-
Date published2019-12-24
Improving the efficiency of using resource base of liquid hydrocarbons in Jurassic deposits of Western Siberia
Under conditions of the same type of oil deposits with hard-to-recover reserves in Jurassic terrigenous reservoirs of the West Siberian oil and gas province, a study was made about the influence of the geological structure features of objects and water flooding technologies on the response degree of production wells to water injection. Response degree of the wells was determined by analyzing the time series of production rates and injection volumes of injection wells with the calculation of inter-correlation function (ICF) values. It was believed that with ICF values in a given injection period of more than 0.5, production well responds to the injection. Factors that have a prevailing effect on water flooding success have been identified. Among them: effective oil-saturated thickness of the formation in production wells; relative amplitude of the self polarization of the formation in both production and injection wells; grittiness coefficient of the formation in injection wells; monthly volume of water injection and distance between wells. Methodological approach is proposed based on the application of the proposed empirical parameter of water flooding success, which involves the use of indirect data in conditions of limited information about the processes occurring in the formation at justification and selection of production wells for transferring them to injection during focal flooding; drilling of additional production and injection wells – compaction of the well grid; shutdown of injection and production wells; use of a transit wells stock; use of cyclic, non-stationary flooding in order to change the direction of filtration flows; determining the design of dual-purpose L-shaped wells (determining length of the horizontal part); limitation of flow rate in highly flooded wells with a high degree of interaction; determination of decompression zones (without injection of indicators), stagnant zones for drilling sidetracks, improving the location of production and injection wells, transferring wells from other horizons; choosing the purpose of the wells during implementation of the selective water flooding system in order to increase the efficiency of using the resource base of liquid hydrocarbons.
-
Date submitted2015-10-17
-
Date accepted2015-12-19
-
Date published2016-08-22
Improving the retention of minerals in the course of separating monolith from bedrock with the use of gas generator cartridges
- Authors:
- G. P. Paramonov
- V. N. Kovalevskii
- Peter Mozer
Results are presented on the effect of firing rate on pressure pulse in charge camera and fracture stress during spalling. Results are presented of comparative calculations using the equations of autocatalytic reactions of firing rates and escape of reaction products for the system of sodium chlorate - polythene (propylene) in pipe shape. Dependences are obtained of firing rate on concentration of gas generating mixture, its density, components size distribution and cartridge case size. Experimental and computational data were used to consider the conditions of firing turning into explosion for compositions based on sodium chlorate and hydrocarbons in layered and powdered systems. The relation is retrieved between the technological parameters of mining activities (blast hole to blast hole distance, blast hole diameter, depth of cartridge placement) and specific cartridge consumption along the spalling line with gas generators going off.
-
Date submitted2015-08-17
-
Date accepted2015-10-12
-
Date published2016-04-22
Isolation of promising areas to drill for unconventional hydrocarbons petrikovskih sediments Davydovskogo deposit Pripyat Trough
- Authors:
- E.I. Shevelev
Pripyat Trough is the only oil basin in the territory of the Republic of Belarus. Mining is carried out within the basin for 50 years. During this time, the proportion of active stocks decreased significantly, while the share of hard-to-inventories increased. Therefore, due to the depletion of traditional reserves, urgent problem arises in the study and production of unconventional hydrocarbon traps. To this type of traps are Petrikov deposits Davydov field. These deposits have low permeability and capacitive properties, but at the same time in a number of wells in the test sediment in Colon yielded commercial oil inflows. Some of the well in a certain period of development led oil from Petrikov deposits. In similar deposits Rechitsa field yielded commercial oil inflows in drilling horizontal wells with hydraulic fracturing. Until recently, the reservoir Petrikov deposits was listed among the off-balance sheet reserves after drilling – reserves transferred to the balance of C1. Therefore, the input to the development of stranded there is a need to identify the most promising area for drilling horizontal wells, followed by hydraulic fracturing. To perform this work was carried out pointwise interpretation of GIS for all wells Davydov field, the results of which built the geological and petrophysical model of the deposit. Also, the analysis of core samples, the results of drilling. Produced dismemberment Petrikov deposits on two subhorizon on the results of the interpretation of GIS and well logs. The outcome of the work performed is a recommended site for drilling.
-
Date submitted2014-12-19
-
Date accepted2015-02-27
-
Date published2015-12-25
Geological and mathematical model of secondary sulphidisation zone polarizability as a function of oil and gas deposit depth
- Authors:
- O. F. Putikov
- S. A. Ivanov
The differential-normalized method of electrical exploration (DNME), by means of polarization study of the secondary sulphidation zone (depth ~ 0,4-0,6 km), allows making conclusion about existence and parameters of an oil and gas deposit (depth up to ~ 2-5 km). The approximate solution of the system of nonlinear differential equations in partial derivatives for concentration of sulfur-hydrogen and pyrite (polarizability) as the function of oil-gas deposit depth has been received. The results are confirmed by experimental investigations in the North Sea.
-
Date submitted2014-11-01
-
Date accepted2015-01-25
-
Date published2015-10-26
Application of the geoelectrochemical method for prospecting of oil and gas deposits in the Barents and Kara seas
- Authors:
- M. A. Kholmyanskii
- S. P. Pavlov
- O. F. Putikov
The use of the geoelectrochemical method of ion-selective electrodes for continuous recording of hydrocarbon micro-components – heavy metals – during the vessel movement to search for oil and gas deposits on the shelf is justified theoretically and experimentally. The existence of «jet» halos in the water column above the shelf oil and gas deposits is discovered experimentally and the method of geoelectrochemical ion-selective electrodes as well as the developed instrumentation for recording these halos is described. The application of a new geoelectrochemical method for prospecting in motion (without sampling) both structural and non-structural oil and gas deposits on the shelf is justified.
-
Date submitted2009-09-26
-
Date accepted2009-11-12
-
Date published2010-06-25
Management of students’ independent work on professional oriented teaching of foreign language with the help of internet resourses (in terms of english language learninig)
- Authors:
- O. Yu. Gagarina
The article is focused on the methodology of internet recourses application in management of students’ independent work in terms of English language learning.
-
Date submitted2008-11-12
-
Date accepted2009-01-15
-
Date published2009-12-11
Social and economic approaches for the arctic shelf’s hydrocarbon field development
- Authors:
- A. M. Fadeev
- F. D. Larichkin
This article shows social and economic approaches for hydrocarbon field development taking into account foreign operating experience of natural resources. different aspects of an effective industrial policy carried out in the operated region’s oil and gas complex, with decisions taken for a wide range of social and economic problems at various stages of the field development are shown. The article also covers questions related to the interaction between state and oil and gas business and the creation of effective strategies for management of hydrocarbon resource developments.
-
Date submitted2008-10-01
-
Date accepted2008-12-15
-
Date published2009-12-11
Possibilities for localization of zones of hydrocarbon accumulation by application of АМТ-data component analysis
Principal component method was used for qualitative interpretation of a matrix of magnetotelluric parameters. Localization of hydrocarbon congregation was the purpose of the investigations. Model of subvertical diffusion of hydrocarbon from reservoir was used as physical basis of oil and gas prospecting. The hydrocarbon роо l generates continuous spatial halation of hydrocarbon above the reservoir. Due to reducing reactions in the area the volumetric pyritization of rocks took place.
-
Date submitted2008-10-23
-
Date accepted2008-12-05
-
Date published2009-12-11
Application of electrical prospecting in combination with seismic prospecting for the geological section prediction and search of hydrocarbon deposits
- Authors:
- V. A. Kuzin
- A. A. Korukhova
The possibility of application of electrical prospecting method SGN (sounding by field growing in the near-field zone) in combination with CDP seismic prospecting for sedimentary section investigations and hydrocarbon deposits prospecting is considered. The physical basis of the method application for hydrocarbon prospecting is the effect of higher resistance of seams, saturated by hydrocarbons. The effect is reflected in the curve of electromagnetic field growth ε(t). The procedures of field works, processing and interpretation of electrical prospecting data are presented.
-
Date submitted2008-10-13
-
Date accepted2008-12-15
-
Date published2009-12-11
A complex of gravi-, magneto-, electroprospecting аnd geoelectrochemical methods for local prediction and prospecting for hydrocarbon deposits
It is proposed to use interpretational spatial distributions of effective parameters of the medium under investigation instead of measured fields in the process of comprehensive prediction-prospecting investigations. There are used effectively: effective density, effective magnetization, intensity of probable sources of geochemical anomalies.
-
Date submitted2008-10-13
-
Date accepted2008-12-28
-
Date published2009-12-11
Ore-forming hydrothermal solutions and gas hydrate formation in the ocean
- Authors:
- S. M. Sudarikov
- S. S. Filatova
Geological and tectonic settings and thermobaric characteristics of hydrothermal activity are confronted with those of gas hydrate formation. Hydrocarbon concentrations and isotopic composition in hydrothermal fluids of mid-ocean ridges with different thickness of sediment cover and marginal oceanic basins are compared. The possible influence of rising thermal fluids on gas hydrate accumulations was analyzed and examples of hydrate formation linked with hydrothermal process are given.
-
Date submitted2008-10-22
-
Date accepted2008-12-14
-
Date published2009-12-11
Peculiarities of structure and comparative analysis of oil-and-gas basins in the Pacific segment of lithosphere
- Authors:
- V. B. Archegov
Comparative analysis was carried out for oil-and-gas-bearing basins of young and oldland platforms of the Pacific segment. Previously the same kind of analysis had been realized for the Atlantic segment of lithosphere. Obtained results confirm the unique geological structure and oil-and-gas capacity of Siberian platform, by these features it differs from all other cratons in the whole world.