-
Date submitted2023-10-29
-
Date accepted2024-04-08
-
Date published2025-02-25
Evaluation of the impact of the distance determination function on the results of optimization of the geographical placement of renewable energy sources-based generation using a metaheuristic algorithm
- Authors:
- Andrei M. Bramm
- Stanislav A. Eroshenko
Since the United Power System was created electrical supply of remote and hard-to-reach areas remains one of the topical issues for the power industry of Russia. Nowadays, usage of various renewable energy sources to supply electricity at remote areas has become feasible alternative to usage of diesel-based generation. It becomes more suitable with world decarbonization trends, the doctrine of energy security of Russia directives, and equipment cost decreasing for renewable energy sources-based power plants construction. Geological exploration is usually conducted at remote territories, where the centralized electrical supply can not be realized. Placement of large capacity renewable energy sources-based generation at the areas of geological expeditions looks perspective due to development of industrial clusters and residential consumers of electrical energy at those territories later on. Various metaheuristic methods are used to solve the task of optimal renewable energy sources-based generation geographical placement. The efficiency of metaheuristics depends on proper tuning of that methods hyperparameters, and high quality of big amount of meteorological and climatic data. The research of the effects of the calculation methods defining distance between agents of the algorithm on the optimization of renewable generation placement results is presented in this article. Two methods were studied: Euclidean distance and haversine distance. There were two cases considered to evaluate the effects of distance calculation method change. The first one was for a photovoltaic power plant with installed capacity of 45 MW placement at the Vagaiskii district of the Tyumen region. The second one was for a wind power plant with installed capacity of 25 MW at the Tungokochenskii district of the Trans-Baikal territory. The obtained results show low effects of distance calculation method change at average but the importance of its proper choose in case of wind power optimal placement, especially for local optima’s identification.
-
Date submitted2023-11-10
-
Date accepted2024-06-03
-
Date published2025-02-25
Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations
- Authors:
- Pavel V. Matrenin
- Alina I. Stepanova
The objective of this study is to enhance user trust in electricity consumption forecasting systems for mining enterprises by applying explainable artificial intelligence methods that provide not only forecasts but also their justifications. The research object comprises a complex of mines and ore processing plants of a company purchasing electricity on the wholesale electricity and power market. Hourly electricity consumption data for two years, schedules of planned repairs and equipment shutdowns, and meteorological data were utilized. Ensemble decision trees were applied for time series forecasting, and an analysis of the impact of various factors on forecasting accuracy was conducted. An algorithm for interpreting forecast results using the SHapley Additive exPlanation method was proposed. The mean absolute percentage error was 7.84 % with consideration of meteorological factors, 7.41 % with consideration of meteorological factors and a load plan formulated by an expert, and the expert's forecast error was 9.85 %. The results indicate that the increased accuracy of electricity consumption forecasting, considering additional factors, further improves when combining machine learning methods with expert evaluation. The development of such a system is only feasible using explainable artificial intelligence models.
-
Date submitted2021-05-12
-
Date accepted2022-05-11
-
Date published2023-07-19
Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption
The article considers a cybernetic model for the price-dependent demand response (DR) consumed by an underground mining enterprise (UGME), in particular, the main fan unit (MFU). A scheme of the model for managing the energy consumption of a MFU in the DR mode and the implementation of the cybernetic approach to the DR based on the IoT platform are proposed. The main functional requirements and the algorithm of the platform operation are described, the interaction of the platform with the UGME digital model simulator, on which the processes associated with the implementation of the technological process of ventilation and electricity demand response will be simulated in advance, is shown. The results of modeling the reduction in the load on the MFU of a mining enterprise for the day ahead are given. The presented solution makes it possible to determine in advance the necessary power consumption for the operation of the main power supply unit, manage its operation in an energy-saving mode and take into account the predicted changes in the planned one (e.g., when men hoisting along an air shaft) and unscheduled (e.g., when changing outdoor air parameters) modes. The results of the study can be used to reduce the cost of UGME without compromising the safety of technological processes, both through the implementation of energy-saving technical, technological or other measures, and with the participation of enterprises in the DR market. The proposed model ensures a guaranteed receipt of financial compensation for the UGME due to a reasonable change in the power consumption profile of the MFU during the hours of high demand for electricity, set by the system operator of the Unified Energy System.
-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
Forecasting planned electricity consumption for the united power system using machine learning
The paper presents the results of studies of the predictive models development based on retrospective data on planned electricity consumption in the region with a significant share of enterprises in the mineral resource complex. Since the energy intensity of the industry remains quite high, the task of rationalizing the consumption of electricity is relevant. One of the ways to improve control accuracy when planning energy costs is to forecast electrical loads. Despite the large number of scientific papers on the topic of electricity consumption forecasting, this problem remains relevant due to the changing requirements of the wholesale electricity and power market to the accuracy of forecasts. Therefore, the purpose of this study is to support management decisions in the process of planning the volume of electricity consumption. To realize this, it is necessary to create a predictive model and determine the prospective power consumption of the power system. For this purpose, the collection and analysis of initial data, their preprocessing, selection of features, creation of models, and their optimization were carried out. The created models are based on historical data on planned power consumption, power system performance (frequency), as well as meteorological data. The research methods were: ensemble methods of machine learning (random forest, gradient boosting algorithms, such as XGBoost and CatBoost) and a long short-term memory recurrent neural network model (LSTM). The models obtained as a result of the conducted studies allow creating short-term forecasts of power consumption with a fairly high precision (for a period from one day to a week). The use of models based on gradient boosting algorithms and neural network models made it possible to obtain a forecast with an error of less than 1 %, which makes it possible to recommend the models described in the paper for use in forecasting the planned electricity power consumption of united power systems.
-
Date submitted2022-05-31
-
Date accepted2022-11-17
-
Date published2022-12-29
Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field
Issues related to the influence of reservoir properties uncertainty on oil field development modelling are considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate matching, the influence of reservoir properties uncertainty on the design technological parameters of development was estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were determined, and multivariate forecasts were made. The described approach of history matching and calculation of the forecast of technological development indicators allows to obtain a more reliable and a less subjective history match as well as to increase the reliability of long-term and short-term forecasts.
-
Date submitted2021-04-20
-
Date accepted2022-04-26
-
Date published2022-07-13
Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass
The article presents a numerical solution of the spatial elastic-plastic problem of determining the stability of the tunnel face soils at the intersection of disturbed zones of the soil mass. The relevance of the study is related to the need to take into account the zones of disturbed soils when assessing the face stability to calculate the parameters of the support. Based on the finite element method implemented in the PLAXIS 3D software package, the construction of a finite element system "soil mass-disturbance-face support" and modeling of the intersection of the disturbed zones of the soil mass were performed. To assess the condition of soils, deformation and strength criteria are taken. The deformation criterion is expressed by the value of the calculated displacement of the tunnel contour in the face, and the strength criterion - by the safety coefficient until the maximum values of the stress state are reached according to the Coulomb–Mohr criterion. The results of the study are presented in the form of histograms of the safety coefficient dependences on the distance to the disturbance at different bending stiffness of the face support structure, as well as the isofields of deformation development. The parameters of rockfall formation in the face zone at the intersection of zones of disturbed soils were determined. The local decrease in strength and deformation properties in the rock mass along the tunnel track should be taken into account when assessing the stability of the tunnel face and calculating the parameters of the support. Within the framework of the constructed closed system, a qualitative agreement of the simulation results with the case of a collapse in the face during the construction of the Vladimirskaya-2 station of the St. Petersburg Metro was obtained.
-
Date submitted2021-03-11
-
Date accepted2021-04-12
-
Date published2022-04-29
Operation mode selection algorithm development of a wind-diesel power plant supply complex
- Authors:
- Yaroslav E. Shklyarskiy
- Daria E. Batueva
The power supply system is affected by external disturbances, so it should be stable and operate normally in compliance with power quality standards. The power supply system goes into abnormal modes operation when, after a short-term failure or disturbance, it does not restore normal mode. The electrical complex, which includes a wind power plant, as well as a battery and a diesel generator connected in parallel, is able to provide reliable power supply to consumers which meets the power quality indicators. The article develops an algorithm that is implemented by an automatic control system to select the operating mode depending on climatic factors (wind) and the forecast of energy consumption for the day ahead. Forecast data is selected based on the choice of the methods, which will have the smallest forecast error. It is concluded that if the energy consumption forecast data is added to the automatic control system, then it will be possible to increase the efficiency of the power supply complex. In the developed algorithm the verification of normal and abnormal modes of operation is considered based on the stability theory. The criteria for assessing the normal mode of operation are identified, as well as the indicators of the object’s load schedules for assessing the load of power supply sources and the quality standards for power supply to consumers for ranking the load by priority under critical operating conditions and restoring normal operation are considered.
-
Date submitted2020-01-09
-
Date accepted2020-01-26
-
Date published2020-02-25
Mining excavator working equipment load forecasting according to a fuzzy-logistic model
- Authors:
- V. S. Velikanov
Due to the fact that the loads occurring in the working equipment of mining excavators are determined by a large number of random factors that are difficult to represent by analytical formulas, for estimating and predicting loads the models must be introduced using non-standard approaches. In this study, we used the methodology of the theory of fuzzy logic and fuzzy pluralities, which allows to overcome the difficulties associated with the incompleteness and vagueness of the data in assessing and predicting the forces encountered in the working equipment of mining excavators, as well as with the qualitative nature of these data. As a result of computer simulation in the fuzzyTECH environment, data comparable with experimental studies were obtained to determine the level of loading of the main elements of the working equipment of mining excavators. Based on a representative sample, a statistical analysis of the data was performed, as a result of which the equation of linear multiple stress regression in the handle of mining excavators was obtained, which allows to make an accurate forecast of the loading of the working equipment of the excavator.
-
Date submitted2019-03-21
-
Date accepted2019-04-30
-
Date published2019-08-23
Actual and Forecast Impact Assessment of Earthquakes on the Global Economic System
- Authors:
- T. P. Skufina
- S. V. Baranov
- V. P. Samarina
Problem of strong earthquakes impact on the global economic system is considered. Geoscientists suggest that increase in Earth's seismicity is highly unlikely, but experts in economic geography say that existing facts indicate increase in seismic risk for economic systems. Using the example of an earthquake in the Tahoku region (Japan, 2011), a comprehensive assessment of economic consequences of a strong earthquake is presented as a part of analysis of three blocks of statistical information: 1) macroeconomic indicators of Japan; 2) stock market indicators; 3) industry indicators of the global economy. Results of the assessment pointed to a new feature of strong earthquakes effects in economically developed regions of the world: globalization processes are spreading regional effects of large earthquakes throughout the world economic system. To understand the magnitude of strong earthquakes problem, estimate of world economy loss from a probable earthquake near the United States, similar to Tahoku, is given. It was established that economic losses would be 2.6 times greater: a drop in the global S&P Global 1200 index would be about 15 %. The farther in time this probable earthquake protects from the Tahoku earthquake, the more globalization will increase losses.
-
Date submitted2018-07-15
-
Date accepted2018-09-07
-
Date published2018-12-21
Justification of rational methods for provision of air to faces of operating coal mines of Vietnam during deepening of mines
- Authors:
- S. G. Gendler
- Tkhe Kha Nguen
Based on the analysis of the mining and geological conditions for developing coal deposits in Vietnam, the existing mining safety regulations, the application of methods for calculating the air supply of working and development faces using the methane factor and modern methods of mathematical modeling of the ventilation of mines threr was developed the procedure for analyzing the efficiency of air distribution management considering the proposed indicator - energy efficiency coefficient for ventilation systems, determined by the efficiency of air use and energy consumption. Relations have been obtained that determine the relationship between the aerodynamic resistance of negative regulators, the number of simultaneously developed working and development faces, the performance of main ventilation fans and the consumed electric power.
-
Date submitted2016-09-04
-
Date accepted2016-11-14
-
Date published2017-02-22
Methodology of reducing rock bump hazard during room and rillar mining of North Ural deep bauxite deposits
- Authors:
- D. V. Sidorov
The article describes practical experience of using room and pillar mining (RAPM) under conditions of deep horizons and dynamic overburden pressure. It was identified that methods of rock pressure control efficient at high horizons do not meet safety requirements when working at existing depths, that is explained by changes in geodynamic processes during mining. With deeper depth, the geodynamic processes become more intensive and number of pillar and roof failures increase. When working at 800 m the breakage of mine structures became massive and unpredictable, which paused a question of development and implementation of tools for compliance assessment of used elements of RAPM and mining, geological, technical and geodynamic conditions of North Ural bauxite deposits and further development of guidelines for safe mining under conditions of deep horizons and dynamic rock pressure. It describes reasons of mine structure failures in workings depending on natural and man-caused factors, determines possible hazards and objects of geomechanic support. It also includes compliance assessment of tools used for calculations of RAPM structures, forecast and measures for rock tectonic bursts at mines of OAO “Sevuralboksitruda” (SUBR). It describes modernization and development of new geomechanic support of RAPM considering natural and technogenic hazards. The article presents results of experimental testing of new parameters of RAPM construction elements of SUBR mines. It has data on industrial implementation of developed regulatory and guideline documents at these mines for identification of valid parameters of RAPM elements at deep depths.
-
Date submitted2016-09-06
-
Date accepted2016-11-13
-
Date published2017-02-22
Justified selection of a seam degassing technology to ensure safety of intensive coal mining
- Authors:
- S. V. Slastunov
- E. P. Yutyaev
The paper contains main aspects of methodological approach to objective analytic assessment of maximum permissible output of the mine faces from the viewpoint of gas factor. Analytic forecast is centered around the assessment of methane inflow into the face area from all possible sources, based on fundamental physical laws, modern tools of mathematical modeling and in-situ tests of main properties and state parameters of the gas-bearing coal formation. Objective and reliable estimation of permissible outputs is a starting point for justified selection of a seam degassing technology, that has to be based on time factor and predicted value of gas recovery from a coal seam to a degassing well. Recommendations have been formulated on the selection of degassing technology for the coal seam «Boldyrevsky» of the Kirov mine, based on the use of cutting-edge technological schemes (hydraulic fracture, carried out from development workings, etc.), successfully implemented on the mentioned site.
-
Date submitted2014-12-07
-
Date accepted2015-02-23
-
Date published2015-12-25
Bump hazard evaluation of a rock mass area as a result of its seismic acoustic activity registration
- Authors:
- V. V. Nosov
Ore production in deep rock-bump hazardous mines is closely connected with the need to in-crease workers’ safety, which demands heavy costs of taking preventive shockproof actions and applying expensive protection systems against mountain blows. The article considers a resource forecasting technique and a bump hazard evaluation method for a rock mass area, based on a mi-cromechanical model, which registers acoustic emission of heterogeneous materials, and empirical data, obtained as a result of acoustic signals registration with the help of the model, aimed at seis-mic-acoustic activity evaluation at «Taimir» and «Oktyabrsky» rock mass areas, belonging to Norylsk industrial region.
-
Date submitted2009-09-19
-
Date accepted2009-11-24
-
Date published2010-06-25
The forecast of the stress-strain state of massifs rocks in the bed deposits
- Authors:
- A. P. Gospodarikov
- M. A. Zatsepin
The variety of the mining and geological conditions with further increasing in depth of the development of bedded deposits leads to necessity for the analysis of stress-strain state near different types of excavations.
-
Date submitted2009-08-02
-
Date accepted2009-10-29
-
Date published2010-02-01
Forecasting the power consumption of mines on the basis of stochastic time-series models
- Authors:
- A. A. Chernysh
- O. B. Shonin
The paper is devoted to building up time series models to forecast the power consumption of a mine. The results discussed are obtained using various linear filter models and artificial neural network. The wavelet transform of the raw time series is shown to be an efficient technique to increase the forecasting accuracy.
-
Date submitted2009-07-27
-
Date accepted2009-09-15
-
Date published2010-04-22
Geomechanical problems in the forecast of stress-strain state of underground stations of the metro at a great depth
- Authors:
- P. A. Demenkov
- I. E. Dolgiy
- V. I. Ochkurov
Forecast of stress and strain state of deep underground metro stations is considered in this article. A complex approach to study of static work of the metro stations including the in situ testing at different stages of their construction and numerical modeling with finite element method is shown.