Submit an Article
Become a reviewer

Search articles for by keywords:
electrical network

Energy industry
  • Date submitted
    2024-06-12
  • Date accepted
    2024-07-18
  • Date published
    2024-07-26

Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities

Article preview

The issue of determining the main parameters of electric energy storage systems – power and energy intensity – is being considered, the determination of which is a fundamentally important task when introducing such devices into the power supply systems of enterprises for both technical (technological) and economic reasons. The work analyzes problems that can be solved by installing electricity storage systems at gas industry facilities. An industry-wide methodology has been developed for calculating the parameters of an electricity storage system based on traditional methods and methods aimed at minimizing the standardized cost of electricity with adaptation to the conditions of the gas industry. A distinctive feature of the presented methodology is the ability to determine the power and energy intensity of electricity storage systems when performing several functions. The methodology was tested at a typical gas industry facility – the Yarynskaya compressor station of OOO Gazprom Transgaz Ukhta, a characteristic feature of which is an autonomous power supply system. An example is given of calculating the electricity storage normalized cost using an improved LCOS indicator, which takes into account the effect of changing the fill factor of the electrical load schedule on the amount of gas consumption by a power plant for its own needs. To confirm the economic efficiency of introducing electricity storage systems calculated using the above methodology, calculations of the integral effect, net present value and efficiency index are presented.

How to cite: Tokarev I.S. Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities // Journal of Mining Institute. 2024. p. EDN UIZSOQ
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Forecasting planned electricity consumption for the united power system using machine learning

Article preview

The paper presents the results of studies of the predictive models development based on retrospective data on planned electricity consumption in the region with a significant share of enterprises in the mineral resource complex. Since the energy intensity of the industry remains quite high, the task of rationalizing the consumption of electricity is relevant. One of the ways to improve control accuracy when planning energy costs is to forecast electrical loads. Despite the large number of scientific papers on the topic of electricity consumption forecasting, this problem remains relevant due to the changing requirements of the wholesale electricity and power market to the accuracy of forecasts. Therefore, the purpose of this study is to support management decisions in the process of planning the volume of electricity consumption. To realize this, it is necessary to create a predictive model and determine the prospective power consumption of the power system. For this purpose, the collection and analysis of initial data, their preprocessing, selection of features, creation of models, and their optimization were carried out. The created models are based on historical data on planned power consumption, power system performance (frequency), as well as meteorological data. The research methods were: ensemble methods of machine learning (random forest, gradient boosting algorithms, such as XGBoost and CatBoost) and a long short-term memory recurrent neural network model (LSTM). The models obtained as a result of the conducted studies allow creating short-term forecasts of power consumption with a fairly high precision (for a period from one day to a week). The use of models based on gradient boosting algorithms and neural network models made it possible to obtain a forecast with an error of less than 1 %, which makes it possible to recommend the models described in the paper for use in forecasting the planned electricity power consumption of united power systems.

How to cite: Klyuev R.V., Morgoeva A.D., Gavrina O.A., Bosikov I.I., Morgoev I.D. Forecasting planned electricity consumption for the united power system using machine learning // Journal of Mining Institute. 2023. Vol. 261 . p. 392-402. EDN FJGZTV
Energy industry
  • Date submitted
    2022-10-26
  • Date accepted
    2023-02-13
  • Date published
    2023-07-19

Determination of the grid impedance in power consumption modes with harmonics

Article preview

The paper investigates the harmonic impedance determination of the power supply system of a mining enterprise. This parameter is important when calculating modes with voltage distortions, since the determined parameters of harmonic currents and voltages significantly depend on its value, which allow the most accurate modeling of processes in the presence of distortions in voltage and current. The power supply system of subsurface mining is considered, which is characterized by a significant branching of the electrical network and the presence of powerful nonlinear loads leading to a decrease in the power quality at a production site. The modernization of the mining process, the integration of automated electrical drive systems, renewable energy sources, energy-saving technologies lead to an increase in the energy efficiency of production, but also to a decrease in the power quality, in particular, to an increase in the level of voltage harmonics. The problem of determining the grid harmonic impedance is solved in order to improve the quality of design and operation of power supply systems for mining enterprises, taking into account the peculiarities of their workload in the extraction of solid minerals by underground method. The paper considers the possibility of determining the grid impedance based on the measurement of non-characteristic harmonics generated by a special nonlinear load. A thyristor power controller based on phase regulation of the output voltage is considered as such a load. Simulation computer modeling and experimental studies on a laboratory test bench are used to confirm the proposed method. The recommendations for selecting load parameters and measuring device connection nodes have been developed.

How to cite: Skamyin A.N., Dobush V.S., Jopri M.H. Determination of the grid impedance in power consumption modes with harmonics // Journal of Mining Institute. 2023. Vol. 261 . p. 443-454. DOI: 10.31897/PMI.2023.25
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-08-01
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field

Article preview

Permo-Carboniferous oil deposit of the Usinskoye field is characterized by an extremely complex type of the void space with intense cross-sectional distribution of cavernous and fractured rock. In this study, for this production site, the process of 3D geological modeling has been implemented. At the first stage, it provided for automated identification of reservoir volumes by comparing the data of core and well logging surveys; at the second stage, identification of rock lithotypes according to Dunham classification is performed on the basis of comparison of thin sections examination and well logging data. A large array of factual information enables the use of machine learning technology on the basis of Levenberg – Marquardt neural network apparatus toward achievement of our research goals. The prediction algorithms of reservoir and rock lithotype identification using well logging methods obtained on the basis of the training samples are applied to the wells without core sampling. The implemented approach enabled complementing the 3D geological model with information about rock permeability and porosity, taking into account the structural features of the identified lithotypes. For the Permo-Carboniferous oil deposit of the Usinskoye field, the volumetric zoning of the distribution of different rock lithotypes has been established. Taking into account the lithotypes identified based on machine learning algorithms, density and openness of fractures were determined, and fracture permeability in the deposit volume was calculated. In general, during the implementation, the machine learning errors remained within 3-5 %, which suggests reliability of the obtained predictive solutions. The results of the research are incorporated in the existing 3D digital geological and process model of the deposit under study.

How to cite: Potekhin D.V., Galkin S.V. Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field // Journal of Mining Institute. 2023. Vol. 259 . p. 41-51. DOI: 10.31897/PMI.2022.101
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-05-13
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing

Article preview

Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.

How to cite: Filippov Е.V., Zakharov L.A., Martyushev D.A., Ponomareva I.N. Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing // Journal of Mining Institute. 2022. Vol. 258 . p. 924-932. DOI: 10.31897/PMI.2022.103
Metallurgy and concentration
  • Date submitted
    2022-05-13
  • Date accepted
    2022-09-24
  • Date published
    2022-11-03

Rapid detection of coal ash based on machine learning and X-ray fluorescence

Article preview

Real-time testing of coal ash plays a vital role in the chemical, power generation, metallurgical, and coal separation sectors. The rapid online testing of coal ash using radiation measurement as the mainstream technology has problems such as strict coal sample requirements, poor radiation safety, low accuracy, and complicated equipment replacement. In this study, an intelligent detection technique based on feed-forward neural networks and improved particle swarm optimization (IPSO-FNN) is proposed to predict coal quality ash content in a fast, accurate, safe,and convenient manner. The data set was obtained by testing the elemental content of 198 coal samples with X-ray fluorescence (XRF). The types of input elements for machine learning (Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, P) were determined by combining the X-ray photoelectron spectroscopy (XPS) data with the change in the physical phase of each element in the coal samples during combustion. The mean squared error and coefficient of determination were chosen as the performance measures for the model. The results show that the IPSO algorithm is useful in adjusting the optimal number of nodes in the hidden layer. The IPSO-FNN model has strong prediction ability and good accuracy in coal ash prediction. The effect of the input element content of the IPSO-FNN model on the ash content was investigated, and it was found that the potassium content was the most significant factor affecting the ash content. This study is essential for real-time online, accurate, and fast prediction of coal ash.

How to cite: Huang J., Li Z., Chen B., Cui S., Lu Z., Dai W., Zhao Y., Duan C., Dong L. Rapid detection of coal ash based on machine learning and X-ray fluorescence // Journal of Mining Institute. 2022. Vol. 256 . p. 663-676. DOI: 10.31897/PMI.2022.89
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-03-17
  • Date accepted
    2022-10-04
  • Date published
    2022-11-10

Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data

Article preview

Landslides are among the most dangerous geological processes, posing a threat to all engineering structures. In order to assess the stability of slopes, complex engineering surveys are used, the results of which are necessary to perform computations of the stability of soil masses and assess the risks of landslide development. The results of integ-rated geological and geophysical studies of a typical landslide slope in the North-Western Caucasus spurs, composed of clayey soils, are presented. The purpose of the work is to increase the reliability of assessing the stability of a landslide mass by constructing a 3D model of the slope, including its main structural elements, identified using modern methods of engineering geophysics. Accounting for geophysical data in the formation of the computed 3D model of the slope made it possible to identify important structural elements of the landslide, which significantly affected the correct computation of its stability.

How to cite: Glazunov V.V., Burlutsky S.B., Shuvalova R.A., Zhdanov S.V. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data // Journal of Mining Institute. 2022. Vol. 257 . p. 771-782. DOI: 10.31897/PMI.2022.86
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-09-22
  • Date accepted
    2022-03-24
  • Date published
    2022-04-29

Predicting dynamic formation pressure using artificial intelligence methods

Article preview

Determining formation pressure in the well extraction zones is a key task in monitoring the development of hydrocarbon fields. Direct measurements of formation pressure require prolonged well shutdowns, resulting in underproduction and the possibility of technical problems with the subsequent start-up of wells. The impossibility of simultaneous shutdown of all wells of the pool makes it difficult to assess the real energy state of the deposit. This article presents research aimed at developing an indirect method for determining the formation pressure without shutting down the wells for investigation, which enables to determine its value at any time. As a mathematical basis, two artificial intelligence methods are used – multidimensional regression analysis and a neural network. The technique based on the construction of multiple regression equations shows sufficient performance, but high sensitivity to the input data. This technique enables to study the process of formation pressure establishment during different periods of deposit development. Its application is expedient in case of regular actual determinations of indicators used as input data. The technique based on the artificial neural network enables to reliably determine formation pressure even with a minimal set of input data and is implemented as a specially designed software product. The relevant task of continuing the research is to evaluate promising prognostic features of artificial intelligence methods for assessing the energy state of deposits in hydrocarbon extraction zones.

How to cite: Zakharov L.А., Martyushev D.А., Ponomareva I.N. Predicting dynamic formation pressure using artificial intelligence methods // Journal of Mining Institute. 2022. Vol. 253 . p. 23-32. DOI: 10.31897/PMI.2022.11
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-20
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Thermal protection implementation of the contact overheadline based on bay controllers of electric transport traction substations in the mining industry

Article preview

The article presents the principle of thermal protection of the contact overheadlineand substantiates the possibility of practical implementation of this principle for rail electric transport in the mining industry. The algorithm for the implementation of modern digital protection of the contact overhead line as one of the functions of the controller is described. A mathematical model of thermal protection is proposed, which follows from the solution of the heat balance equation. The model takes into account the coefficient of the electrical networktopology, as well as the coefficient of consumption of the current-carrying core of the cable, which determines the reduction in the conducting section from contact erosion and the growth of oxide films. Corrections for air flows are introduced when receiving data from an external anemometer, via telemechanics protocol. The mathematical model was tested by writing a real thermal protection program in the C programming language for the bay controller, based on the circuitry of which is the STM32F407IGT6 microcontroller for the microcontroller unit. Verification tests were carried out on a serial bay controller in 2020. The graphs for comparing the calculated and actual values of temperatures, with different flow rates of the current-carrying conductor of the DC cable, are given. To obtain data, telemechanics protocols IEC 60870-104 and Modbus TCP, PLC Segnetics SMH4 were used.

How to cite: Lantsev D.Y., Frolov V.Y., Zverev S.G., Uhrlandt D., Valenta J. Thermal protection implementation of the contact overheadline based on bay controllers of electric transport traction substations in the mining industry // Journal of Mining Institute. 2021. Vol. 251 . p. 738-744. DOI: 10.31897/PMI.2021.5.13
Electromechanics and mechanical engineering
  • Date submitted
    2021-03-11
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

The influence of solar energy on the development of the mining industry in the Republic of Cuba

Article preview

Cuba is traditionally considered a country with an underdeveloped industry. The share of the mining and metallurgical industries in the gross industrial production of the republic is small – about 3 % of GDP. The development of deposits and the extraction of nickel ores is an important sector of the economy of the Republic of Cuba, since the largest reserves of nickel and cobalt on the North American continent are located on the territory of the country. The development of the country energy system can serve as a growth factor in this sector of the economy. Due to climatic features and impossibility of integrating new capacities into the energy system through the construction of hydroelectric power plants, solar energy is a promising direction. Determining the feasibility of using solar tracking systems to increase the generation of electricity from solar power plants is one of the main challenges faced by engineers and renewable energy specialists. Currently, there are no solar tracking systems in Cuba that can provide information to assess the effectiveness of this technology in the country. The lack of the necessary technologies, as well as the high cost of developing solar power plants with tracking systems, limit the widespread introduction of such complexes. Hence follows the task of creating an inexpensive experimental model that allows assessing the effectiveness of tracking systems in specific weather conditions of the Republic of Cuba. This model will allow in future to increase the efficiency of electrical complexes with solar power plants, which provide power supply to the objects of the mineral resource complex and other regions.

How to cite: Shklyarskiy Y.E., Guerra D.D., Iakovleva E.V., Rassõlkin A. The influence of solar energy on the development of the mining industry in the Republic of Cuba // Journal of Mining Institute. 2021. Vol. 249 . p. 427-440. DOI: 10.31897/PMI.2021.3.12
Mining
  • Date submitted
    2020-05-19
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Results of Comprehensive Geophysical Studies on the Search for Crypts on the Territory of Suburban Necropolis of Tauric Chersonese in the Karantinnaya Balka

Article preview

The article presents the results of comprehensive studies carried out by the research team of Saint Petersburg Mining University in cooperation with the specialists from the State Museum-Preserve "Tauric Chersonese" in 2019. The purpose of the work was to discover and map antique and medieval crypts (ancient burial structures) on the territory of suburban necropolis of Tauric Chersonese in the Karantinnaya balka. The complex of geophysical methods included continuous ground penetrating radar sounding at two center frequencies of 350 and 500 MHz and contactless electrical tomography. To minimize spatial errors in the process of studies, topographic and geodetic works were carried out. For the first time wave electromagnetic effects were identified, which indicated the positions of hidden underground crypts. Geological factors were established that are favorable for cutting crypts in the layered thickness of Sarmatian limestones. The obtained results allowed to justify the feasibility of continuing geophysical works at the necropolis in order to study interior space of the discovered crypts and to determine the boundaries of archaeological heritage.

How to cite: Glazunov V.V., Ageev A.S., Gorelik G.D., Sarapulkina T.V. Results of Comprehensive Geophysical Studies on the Search for Crypts on the Territory of Suburban Necropolis of Tauric Chersonese in the Karantinnaya Balka // Journal of Mining Institute. 2021. Vol. 247 . p. 12-19. DOI: 10.31897/PMI.2021.1.2
Mining
  • Date submitted
    2019-03-13
  • Date accepted
    2019-05-07
  • Date published
    2019-08-23

Modern Mathematical Forecast Methods of Maintenance and Support Conditions for Mining Tunnel

Article preview

The research focuses on mathematical methods of mining pressure forecast to develop rational support patterns for mining tunnels and to ensure safety of mining operations. The purpose of research is to develop the methodology of applying advanced calculation methods and software solutions based on neural networks to reduce dispersion of factors influencing stability of mining tunnels, as well as to define rational parameters of mining tunnel support. The authors review the algorithm of geomechanical process examination, which is divided into several stages. First of all, it is proposed to use cluster analysis to examine location conditions of man-made outcrops, which allows to divide all the diversity of existing conditions for mining tunnel construction. Cluster analysis first allows to reduce the dispersion of factors that influence the stability of mining tunnels in various clusters, and then to determine rational parameters of tunnel support in each cluster. After the problem of cluster analysis is solved, it is proposed to use software programs that allow to study geomechanical processes in each cluster. At this stage, both standard methods (normative techniques, numerical modelling, analogies use, etc.) and the most advanced methods – neural networks – can be applied. Described algorithm of solving geomechanical problems, which utilizes advanced numerical methods and a software package based on neural networks, ensures an individual approach to estimation of mining pressure under varying conditions of man-made outcrop location in the rock mass.

How to cite: Ignatyev S.A., Sudarikov A.E., Imashev A.Z. Modern Mathematical Forecast Methods of Maintenance and Support Conditions for Mining Tunnel // Journal of Mining Institute. 2019. Vol. 238 . p. 371-375. DOI: 10.31897/PMI.2019.4.371
Electromechanics and mechanical engineering
  • Date submitted
    2018-12-25
  • Date accepted
    2019-03-02
  • Date published
    2019-06-25

Non-linear electrical load location identification

Article preview

The article discusses the issues of identifying the location of non-linear loads in electrical networks which makes the main contribution to the distortion of the non-sinusoidal voltage and current in the distribution network of an industrial enterprise, including mining enterprises. The existing methods for determining the location of the source of higher harmonic components in voltage and current are considered, their advantages and disadvantages are revealed. The main disadvantages of the methods used include the low accuracy and incorrectness of their use in existing enterprises. When developing a new method, the authors were faced with the task of simplicity of its use in the conditions of industrial operation of electrical equipment and the absolute correctness of the results obtained. The proposed method of identifying the source of higher harmonics is based on the variation of the parameters of the power system, in particular, the change in resistance of power transformers taking into account their transformation ratio. It is shown that by varying the transformation ratio during regulation under load, the total coefficient of the harmonic components of the voltage changes. Based on the constructed dependencies, the variation of the derivative of this function with different variations of the parameters of sources of higher harmonics is analyzed and a method is developed that allows determining the share contribution of consumers to the total harmonic component of the voltage.

How to cite: Pirog S., Shklyarskiy Y.E., Skamyin A.N. Non-linear electrical load location identification // Journal of Mining Institute. 2019. Vol. 237 . p. 317-321. DOI: 10.31897/PMI.2019.3.317
Electromechanics and mechanical engineering
  • Date submitted
    2018-09-08
  • Date accepted
    2018-11-01
  • Date published
    2019-02-22

Complexation of telecommunications and electrical systems in mines and under-ground facilities

Article preview

The possible options for the integration of telecommunications and electrical systems of mining enterprises are considered. Based on an analysis of the current state and prospects for the development of telecommunications systems, various technical solutions are proposed for sharing the power supply networks available in mines and underground structures in order to solve the problems of telecommunication, automate process control and ensure the safety of operations. The analysis of the possibilities of applying the PLC technology in underground structures and mines for solving specific telecommunication problems has been carried out, and examples of their possible technical and hardware implementation are given.

How to cite: Shpenst V.A. Complexation of telecommunications and electrical systems in mines and under-ground facilities // Journal of Mining Institute. 2019. Vol. 235 . p. 78-87. DOI: 10.31897/PMI.2019.1.78
Geoeconomics and Management
  • Date submitted
    2018-07-02
  • Date accepted
    2018-09-04
  • Date published
    2018-12-21

Strategic Planning of Arctic Shelf Development Using Fractal Theory Tools

Article preview

The paper justifies the necessity to utilize new methods of strategic planning in oil and gas field exploitation in the Arctic shelf during the implementation of high technology diversified model of development for oil and gas companies (OGC) based on principles and tools of fractal theory. It has been proved that despite its challenging conditions the Arctic represents not only resource potential of the country and a guarantee of national safety, but also a key driver of market self-identification and self-organization of OGCs. Identified and analyzed problems in institutional procurement of shelf development and utilized methods of strategic planning and project management, both on the levels of state and corporate governance, demonstrate that reductive approach of the fractal theory allows to take into account diversification of heterogeneous multicomponent project models, which can be reduced to a single management decision with inverse iterations of neural network modelling. Suggested approach is relevant for strategic planning not only on the stage of investment portfolio justification, but also for identification and assessment of project risks; ranking of projects according to the order of their implementation; back and - forth management (monitoring and supervision) and project completion. It has been detected that such basic properties of the fractal as self-similarity, recurrence, fragmentation and correlation between all fractal dimensions allow to systematize chaotically changing values of market parameters in the Arctic shelf development project, which provides an opportunity to forecast market development with minimal prediction errors.

How to cite: Vasiltsov V.S., Vasiltsova V.M. Strategic Planning of Arctic Shelf Development Using Fractal Theory Tools // Journal of Mining Institute. 2018. Vol. 234 . p. 663-672. DOI: 10.31897/PMI.2018.6.663
Geology
  • Date submitted
    2017-09-17
  • Date accepted
    2017-11-06
  • Date published
    2018-02-22

Collaborative interpretation of the data obtained by resistivity and ground penetrating radar methods for assessing the permeability of sandy clay soils

Article preview

A method for estimating the filtration factor of sandy clay soils is considered on the basis of a joint interpretation of the data of a set of methods of engineering electrical exploration, including electrical resistivity tomography and ground penetrating radar studies. The solution of this problem is based on the use of known empirical connections between the imaginary and real parts of the complex dielectric permittivity, specific electrical resistance, and Q factor. An example of the effective joint use of the ground penetrating radar and non-contact electrical resistivity tomography shows how to obtain qualitative and quantitative estimates of a changing filtration factor in a draining road layer. It is necessary to use precise engineering geological information in order to provide the required estimates. The proposed approach makes it possible to describe continuous profiles of a pavement and underlying layers by ground penetrating radar and electrical resistivity tomography, as well as to assess soil properties when conducting an electrical survey from the surface of asphalt concrete pavement. Recommendations for the implementation of the developed methods of complex engineering and geophysical research are given for solving issues of repair work design, supervision, and quality control of road construction.

How to cite: Lalomov D.A., Glazunov V.V. Collaborative interpretation of the data obtained by resistivity and ground penetrating radar methods for assessing the permeability of sandy clay soils // Journal of Mining Institute. 2018. Vol. 229 . p. 3-12. DOI: 10.25515/PMI.2018.1.3
Geology
  • Date submitted
    2016-11-18
  • Date accepted
    2016-12-28
  • Date published
    2017-04-14

Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse

Article preview

The paper describes theory, method and first experimental results of research on the interaction between electromagnetic waves of extremely low and ultra low frequency (0.1-200 Hz), the Earth crust and ionosphere in the field of two mutually orthogonal industrial power lines, 109 and 120 km long, in the course of FENICS experiment (Fennoscandian Electrical conductivity from Natural and Induction Control Source soundings). The main focus was on the observation results along the line of Karelia-Kola geotraverse over a distance of 700 km from the source. High horizontal homogeneity of geoelectrical lithosphere section has been detected in the eastern part of the Baltic shield at depth range from 10-15 to 50-70 km. Parameters of «regular» lithosphere section have been specified to the depth of 60-70 km. As a result of inverse problem solution for the western part of Karelia and Central Finland, a zone of decreased transverse resistivity has been detected at the depth of 50-60 km, corresponding to the area, detected by seismic methods, where Moho boundary reaches the same depth.

How to cite: Shevtsov A.N., Zhamaletdinov A.A., Kolobov V.V., Barannik M.B. Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse // Journal of Mining Institute. 2017. Vol. 224 . p. 178-188. DOI: 10.18454/PMI.2017.2.178
Geology
  • Date submitted
    2016-09-21
  • Date accepted
    2016-11-04
  • Date published
    2017-02-22

Combined 2D inversion of electrotomographic and audio-magnetotellurgic sounding data to solve mining problems

Article preview

Electrical methods of exploration are widely applied in prospecting and estimation of ore mineral resources. It is not always that geoelectrical models obtained in the course of interpretation of different types of electric and electromagnetic sounding are in line with each other. This leads to difficulties in geological interpretation of electrical exploration results. In single cases a geological model can be built that with great precision satisfies data from different electrical explorations, for instance, results of geometric and inductive electromagnetic soundings. For this purpose an algorithm of combined inversion of electrotomographic and audio-megnetotellurgic sounding data has been developed and implemented by A.E.Kaminskii in software ZondRes2D. Advantage of combined inversion has been shown for investigation of sections up till 400-500 m deep on synthetic models and actual field data.

How to cite: Kulikov V.A., Kaminskii A.E., Yakovlev A.G. Combined 2D inversion of electrotomographic and audio-magnetotellurgic sounding data to solve mining problems // Journal of Mining Institute. 2017. Vol. 223 . p. 9-19. DOI: 10.18454/PMI.2017.1.9
Electromechanics and mechanical engineering
  • Date submitted
    2015-08-23
  • Date accepted
    2015-10-26
  • Date published
    2016-04-22

Low-voltage electrical apparatus

Article preview

The article describes the main trends in the development of low-voltage electrical appliances and related accessories, as well as issues of efficiency, reliability and safety. According to the authors, the main trends in the development of low-voltage apparatus can be considered: the transition from the use of certain devices to the system devices, unified by the process of installation and running in standard modules and comply with all the functional requirements of control systems; improving the standardization and normalization of the EA on an international scale; unification of constructive elements of the EA; increase the volume of production of complete device management and contactless application logic control systems and specialized computers for management purposes; increase the proportion of contactor relay equipment DC, performs a variety of control functions. Improved security service low voltage, through the use of low voltage (24 V DC, 110 V AC), voltage presence signaling devices; increase the proportion of and the use of combined control and protection devices as well as devices for the automation of recruitment and duty cycles of machines: differentsequencer, track control devices, relays, pulse counting, and so on. n.

How to cite: Apollonskii S.M., Kuklev Y.V. Low-voltage electrical apparatus // Journal of Mining Institute. 2016. Vol. 218 . p. 251-260.
Geology
  • Date submitted
    2014-12-19
  • Date accepted
    2015-02-27
  • Date published
    2015-12-25

Geological and mathematical model of secondary sulphidisation zone polarizability as a function of oil and gas deposit depth

Article preview

The differential-normalized method of electrical exploration (DNME), by means of polarization study of the secondary sulphidation zone (depth ~ 0,4-0,6 km), allows making conclusion about existence and parameters of an oil and gas deposit (depth up to ~ 2-5 km). The approximate solution of the system of nonlinear differential equations in partial derivatives for concentration of sulfur-hydrogen and pyrite (polarizability) as the function of oil-gas deposit depth has been received. The results are confirmed by experimental investigations in the North Sea.

How to cite: Putikov O.F., Ivanov S.A. Geological and mathematical model of secondary sulphidisation zone polarizability as a function of oil and gas deposit depth // Journal of Mining Institute. 2015. Vol. 216 . p. 31-37.
Mining machine, electrical engineering and electromechanics
  • Date submitted
    2010-07-29
  • Date accepted
    2010-09-27
  • Date published
    2011-03-21

Efficiency increasing of condenser batteries operation in mining enterprise`s electric circuits

Article preview

This work contains the method of effective reactive power compensation at the expense of high harmonics reduction. The decrease of condenser batteries overloading from the high harmonics is based on variation of condenser power depending on current and voltage spectral structure, electric network parameters and load power.

How to cite: Skamin A.N. Efficiency increasing of condenser batteries operation in mining enterprise`s electric circuits // Journal of Mining Institute. 2011. Vol. 189 . p. 107-110.
Problems in geodynamic safety in the exploration of solid deposits
  • Date submitted
    2009-10-26
  • Date accepted
    2009-12-27
  • Date published
    2010-09-22

Support of geodynamic safety in mining of the Khibini deposits

Article preview

The paper deals with the problems of geodynamics in mining of the Khibini deposits. Description is given to the complex of organizational-technical arrangements for provision of geodynamic safety at the Apatit Co and to principal trends of its development.

How to cite: Shaposhnikov Y.P., Zvonar A.Y., Mozhaev S.A., Akkuratov M.V. Support of geodynamic safety in mining of the Khibini deposits // Journal of Mining Institute. 2010. Vol. 188 . p. 104-108.
Applied and fundamental research in physics and mathematics
  • Date submitted
    2009-09-17
  • Date accepted
    2009-11-21
  • Date published
    2010-06-25

The wave motions caused by oscillations of a flat wall

Article preview

The research is devoted construction analytical, in particular, exact solution of a problem on movement of the electrically conducting ideal rotating liquid modeling wave movements in a liquid kernel of the Earth. Namely, the problem about radiation of waves in rotating incompressible electrically conducting liquid by the flat wall making, since the initial moment, harmonious fluctuations is considered. Such statement of a problem can serve as the first step to research of influence of heterogeneity of the liquid environment on generation and maintenance of a magnetic field of the Earth.

How to cite: Peregudin S.I., Kholodova S.E. The wave motions caused by oscillations of a flat wall // Journal of Mining Institute. 2010. Vol. 187 . p. 113-116.
Metallurgy
  • Date submitted
    2009-08-01
  • Date accepted
    2009-10-08
  • Date published
    2010-02-01

Advance of the metallurgical limestone shaft kilning process control system

Article preview

Today at management system engineering by metallurgical processes used to special methods of the control theory such as optimal, neuro-fuzzy and adaptive methods. First of all, it is connected with increase of problems complexity maintained in control process. In article possibility of application of neural networks is considered at improvement of a control system by process of mine roasting of limestone, are described the neural network scheme controls and the basic stages of its construction.

How to cite: Koteleva N.I. Advance of the metallurgical limestone shaft kilning process control system // Journal of Mining Institute. 2010. Vol. 186 . p. 181-184.
Geotechnical engineering, powerengineering and automation
  • Date submitted
    2009-08-05
  • Date accepted
    2009-10-07
  • Date published
    2010-02-01

Electrical supply of power installations of oil extracting from independent power stations

Article preview

In article the imitating model of the closed system of an independent electrical supply with the energy carrier in the form of passing oil gas, with which help probably is presented: to establish parities of capacities of microturbine installation and погружного the electric motor for system work in a nominal mode; to eliminate the higher harmonious components of a current and pressure for maintenance with the electric power of the remote areas of the oil extracting satisfying with GOST 13109-97.

How to cite: Turysheva A.V. Electrical supply of power installations of oil extracting from independent power stations // Journal of Mining Institute. 2010. Vol. 186 . p. 156-160.