Submit an Article
Become a reviewer

Search articles for by keywords:
скорость

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-10-04
  • Date accepted
    2024-09-24
  • Date published
    2025-02-25

Crustal movement model in the ITRF2020 – a case study in Northern Vietnam

Article preview

In the North area of Vietnam, the crustal movement velocity of 38 GNSS points belonging to different international Earth reference frames (ITRF2000, ITRF2005, ITRF2008) is adjusted to the international Earth reference frame ITRF2020. This is the latest frame up to now. Since then, the picture of crustal movement in the North area of Vietnam has been unified in a dynamic coordinate system. In the study area, the rate of crustal movement is about 35 mm/year, and the direction of displacement is from northwest to southeast. To build a model of the crustal movement of the Earth in the northern area of Vietnam, the movement velocity data of 38 stations in ITRF2020 is evaluated with high accuracy. All points are also satisfactory. And then, the crustal movement velocity model is built by using the collocation method in the form of the 3-order Markov function. Within 38 stations, 34 stations are used to build the model and 4 remaining stations are used as checked stations. The obtained results show that the Earth's crust movement velocity model has an accuracy of about 2 mm/year for movement velocity and 2 deg for movement direction. This is the first model of Earth's crust movement in the North of Vietnam that has been built in the latest dynamic coordinate system ITRF2020. These results have important significance in the research and practical application of the movement of the Earth's crust. The steps of building the movement velocity model in this study can be applied to other experimental areas in the territory of Vietnam.

How to cite: Tham B.T.H., Thanh P.T. Crustal movement model in the ITRF2020 – a case study in Northern Vietnam // Journal of Mining Institute. 2025. Vol. 271 . p. 120-130. EDN PHHTOE
Oil and gas
  • Date submitted
    2021-04-30
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Methodology for testing pipeline steels for resistance to grooving corrosion

Article preview

The methodology for testing pipeline steels is suggested on the assumption that for the destruction of pipes in field oil pipelines by the mechanism of grooving corrosion the simultaneous fulfillment of such conditions as the occurrence of scratches on the lower generatrix of the pipe, eventually growing into a channel in the form of a groove, emulsion enrichment with oxygen, presence of pipe wall metal in a stressed state, presence of chlorine-ion in the oil-water emulsion is required. Tests are suggested to be carried out in 3 % aqueous solution of NaCl with continuous aeration by air on bent plates 150×15×3 mm, made of the analyzed steel, the middle part of which is under the action of residual stresses σ res , close to the level of maximum equivalent stresses σ eqv in the wall of the oil pipeline, with the presence of a cut on this part on the inner side of the plate as an initiator of additional mechanical stresses. Using the value of the modulus of normal elasticity of the analyzed steel, the degree of residual strain of the elastic-plastic body from this material, corresponding to the value σ res ≈ σ eqv is calculated, based on which the plates are bent to the required deflection angle, after which the cut is applied to them. After keeping the plates in the corrosive medium for each of them the increase in depth of the cut as a result of corrosion of the walls by the corrosive medium is analyzed, from which the rate of steel K by the mechanism of grooving corrosion is calculated taking into account the duration of tests. Corrosion rate values for two pipe steel grades determined by the suggested procedure are given. The comparison of K values obtained leads to the conclusion about the higher resistance to grooving corrosion of 09G2S steel.

How to cite: Bolobov V.I., Popov G.G. Methodology for testing pipeline steels for resistance to grooving corrosion // Journal of Mining Institute. 2021. Vol. 252 . p. 854-860. DOI: 10.31897/PMI.2021.6.7
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-04-23
  • Date accepted
    2021-09-07
  • Date published
    2021-12-16

Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces

Article preview

Currently, the determination of the emission rate of suspended solids from a unit of the surface area of a man-made mass at various parameters of the wind flow is not sufficiently described. The analysis of the world experience of researchers shows that existing laboratory installations have various design features that do not allow to correctly determine the mass of the dust being flapped and wind-blown. Based on the analysis results, the concept of an innovative laboratory installation for the study of dust-forming surfaces has been developed. It takes into account the influence of wind shadows, the deturbulization of an artificially created air flow, the possibility of regulating not only the flow velocity mode, but also the creation of a vacuum or disturbance in the area of sample placement, as well as the formation of a certain angle of wind flow attack relative to the surface. The concept provides for the possibility of determining the volume of dust emissions by the values of the lost dust masses in the sample and by the values of dust concentrations in the outgoing stream. The calculation of the main basic elements of the installation using the ANSYS FLUENT software package was carried out. The model and configuration of the wind tunnel have been developed and calculated, the main geometric parameters and functional elements for the possibility of use in scientific work have been determined. For practical use of the empirical roughness value of the underlying surface, its values are recommended in a wide range – from zero for the water surface to 0.44 for large cities with tall buildings and skyscrapers.

How to cite: Ivanov A.V., Smirnov Y.D., Chupin S.A. Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces // Journal of Mining Institute. 2021. Vol. 251 . p. 757-766. DOI: 10.31897/PMI.2021.5.15
Metallurgy and concentration
  • Date submitted
    2021-03-10
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

Influence of heat treatment on the microstructure of steel coils of a heating tube furnace

Article preview

Transportation and refining of heavy metal-bearing oil are associated with the problems of localized destruction of metal structures and elements due to corrosion. In the process of equipment operation, it was revealed that premature failure of steel coils of heating tube furnaces at oil refineries and petrochemical plants was associated with insufficient strength and corrosion resistance of the steelwork. The study of the effect that structure and phase composition of 15KH5M-alloy steel elements of heating furnaces at oil refineries have on the corrosion properties, associated with mass loss and localized destructions in the process of heat treatment, allows to develop protective measures and determine heating modes with a rate-limiting step of oxidation. The rate of various corrosion types of 15KH5M steel is used as an indicator to assess the effectiveness of the applied modes of coil heat treatment in order to increase their corrosion resistance and improve their operational characteristics. Conducted experiments on heat treatment of certain steel coil sections allowed to determine rational heating modes for the studied coils, which made it possible to reduce their mass loss and increase corrosion resistance of working surfaces in the process of operation. Proposed heat treatment of steel coils at specified intervals of their operation in the tube furnaces creates conditions for their stable performance and affects the degree of industrial and environmental safety, as well as reduces material costs associated with the repair and replacement of individual assemblies and parts of tube furnaces.

How to cite: Bazhin V.Y., Issa B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace // Journal of Mining Institute. 2021. Vol. 249 . p. 393-400. DOI: 10.31897/PMI.2021.3.8
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-18
  • Date accepted
    2020-06-16
  • Date published
    2021-04-26

Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement

Article preview

The article discusses the solution to the problem of underground railway transport slipping in dynamic modes, which occurs when there is a significant difference in the speeds of the driving and driven pairs of wheels. The state of the rail surfaces largely determines the coefficient of adhesion, therefore, using a mathematical model, the condition for the dependence of the magnitude of slipping and tractive effort is selected. For effective acceleration and deceleration of an electric locomotive, it is necessary to control the coefficient of adhesion at a certain level. A simulation model of rolling stock has been created, which for the first time takes into account a mechanical system with distributed parameters. In the structural diagram of the automatic control system of traction electric drives with frequency regulation, such factors as the volume of goods being moved, rolling friction, slope (rise) levels and the state of the rail track are taken into account. The simulation results show the features of the movement and stops of the freight train not only by the diagrams of speed and forces in the modes of acceleration-deceleration and uniform movement, but also the positions of the plungers and tractive forces on the couplings of the electric locomotive and all trolleys involved in the movement of goods. The practical application of the proposed method lies in the possibility of starting a heavily laden train from its place on the ascent section in conditions of insufficient adhesion coefficient with contaminated roads.

How to cite: Borisov S.V., Koltunova E.A., Kladiev S.N. Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement // Journal of Mining Institute. 2021. Vol. 247 . p. 114-121. DOI: 10.31897/PMI.2021.1.12
Mining
  • Date submitted
    2021-01-25
  • Date accepted
    2021-02-22
  • Date published
    2021-04-26

Conducting industrial explosions near gas pipelines

Article preview

The problem to ensure the safety of objects which are in the area of blasting operations, ensuring the destruction of hard rocks, remains relevant. The article presents the results of a large-scale experiment to determine the safe conditions for conducting drilling and blasting operations near the active gas pipeline. The simplest and most reliable way to ensure the safety of the protected object from seismic impact is to reduce the intensity of the seismic wave, which is achieved by changing the parameters of drilling and blasting operations. This requires research to determine the impact of blasting operations on the parameters of seismic waves and the development of methods for measuring these parameters. The paper presents a detailed analysis of the seismic blast wave impact on the displacement of the ground and the model gas pipeline. The features of seismic monitoring during blasting operations near the active gas pipeline are shown. The seismic coefficients and attenuation coefficient of seismic waves are determined. It is proved that the readings of the seismic receivers on the surface and in the depth of the massive differ by two or more times.

How to cite: khokhlov S.V., Sokolov S.T., Vinogradov Y.I., Frenkel I.B. Conducting industrial explosions near gas pipelines // Journal of Mining Institute. 2021. Vol. 247 . p. 48-56. DOI: 10.31897/PMI.2021.1.6
Electromechanics and mechanical engineering
  • Date submitted
    2019-05-24
  • Date accepted
    2019-07-15
  • Date published
    2019-10-23

Effective Power and Speed of Mining Dump Trucks in Fuel Economy Mode

Article preview

Existing methods for determining the effective power, based on the calculation of the average indicator operation of the engine during the piston stroke, do not take into account the change in thermodynamic parameters and the polytropic operation of the engine, the value of which depends on the polytropic efficiency of the duty cycle. This is the reason that the calculation of the effective power leads to some error – the margin of the engine features. The identification of this stock allows us to review the entire line of dump trucks in the direction of increasing their pass- port effective capacity, which will lead to a reduction in capital purchase costs due to the choice of a previously un- derestimated and cheaper option, as well as a reduction in current operating costs due to a decrease in the specific fuel consumption rate. Taking into account the stochastic nature of the transport process and assessing the influence of all external and internal factors when calculating the rational mode of operation of a mining truck can further reduce specific fuel consumption by choosing the rational speed of its movement in loaded and empty directions.

How to cite: Alexandrov V.I., Vasileva M.A., Koptev V.Y. Effective Power and Speed of Mining Dump Trucks in Fuel Economy Mode // Journal of Mining Institute. 2019. Vol. 239 . p. 556-563. DOI: 10.31897/PMI.2019.5.556
Electromechanics and mechanical engineering
  • Date submitted
    2018-05-05
  • Date accepted
    2018-07-18
  • Date published
    2018-10-24

Calculations of dynamic operating modes of electric drives self-propelled mining machines

Article preview

The task of improving the calculations of the dynamic modes of electric drives of self-propelled mining machines, particulary, tunneling machines, is considered. Attention is drawn to the possibility to opearte in dynamic modes of a spatial change in the an asynchronous electric motor stator housing position, included in the electric drive, around the axis of its rotor due to the ultimate rigidity of the supports of the mining machine. In connection to this, it is possible to change the absolute angular velocity of rotation of the electromagnetic field of the stator of this electric motor. The necessity of introducing into existing mathematical models that determine the state and behavior of asynchronous electric motors, additional differential and algebraic relations for calculating the absolute speed of the electromagnetic field of the stator and the nature of the motion of the stator housing of the electric motor as part of the mining machine is noted. The results of calculations of the idle start mode of the electric motor of the executive body of the mining combine are shown, showing the difference in the nature of its electromagnetic moment variation, rotor rotation speed, as well as efforts in individual reducer elements of the driving body driving the stator body from similar calculation results without taking into account the stator body movement. The conclusion is made about the possible discrepancy between the calculated and experimental results in the study of the dynamic modes of self-propelled mining machines.

How to cite: Eshchin E.K. Calculations of dynamic operating modes of electric drives self-propelled mining machines // Journal of Mining Institute. 2018. Vol. 233 . p. 534-538. DOI: 10.31897/PMI.2018.5.534
Metallurgy and concentration
  • Date submitted
    2018-01-23
  • Date accepted
    2018-02-25
  • Date published
    2018-06-22

Influence of post-welding processing on continuous corrosion rate and microstructure of welded joints of steel 20 and 30KHGSA

Article preview

Welded joints of structure steels have lower corrosion resistance in comparison to base metal. To increase corrosion resistance of welded joints and heat-affected zone they use longtime and energy-consuming methods of thermal and mechanic processing. The article covers the possibility of using the superplasticity deformation (SD) effect for processing of welded joints. The effect of SD is that metals and alloys with a small grain size (of the order of 10 μm) under conditions of isothermal deformation at a certain temperature acquire the ability for unusually large plastic deformations while reducing the deformation resistance. Grain-boundary sliding during superplasticity provides a high degree of structural homogeneity. If the metal does not have the small grain size, then during isothermal deformation at appropriate temperature the SD effect will not be fully manifested but will cause relaxation of residual micro and macro strains, recrystallization, which can be used during processing of welded joints to ensure their full strength. There have been carried out the investigation of processing methods impact - SD, thermal cycling and influence of post-welding treatment on corrosion rate and microstructure of steels 20 and 30KhGSA. It is shown that after deformation in superplasticity mode there is low corrosion rate and more favorable microstructure in the studied samples of steel. Post-welding processing of welded joints in SD mode provides low tool loads and low energy costs.

How to cite: Shchipachev A.M., Gorbachev S.V. Influence of post-welding processing on continuous corrosion rate and microstructure of welded joints of steel 20 and 30KHGSA // Journal of Mining Institute. 2018. Vol. 231 . p. 307-311. DOI: 10.25515/PMI.2018.3.307
Electromechanics and mechanical engineering
  • Date submitted
    2018-01-02
  • Date accepted
    2018-03-14
  • Date published
    2018-06-22

Analysis of the options of modernization of roller-bit drilling machines with a submersible steamer

Article preview

The designs of submersible hammers and dampers protected by patents for reducing the vibration of the drilling rig of roller drill machines are proposed. The variants of modernizing drilling rigs for drilling hard rocks and faces of complex structures are considered. Particular attention is paid to the joint work of submersible shockers and pneumatic shock absorbers, the preferred schemes for the arrangement of these devices by drilling rigs are indicated. The results of experimental tests of machines with pneumatic hammers are presented to determine the vibration performance and drilling speeds. The pneumatic hammer allows increasing the speed of drilling process to the intensification of the destruction of the plain face by the shock load and the cleavage of the protrusions of the unevenness of the face, the better fitting of the bit to the face and the release of the blades or the bit pins from the drill bit. The choice of a particular type of damper or shock absorber depends on its design scheme and the possibility of changing the design of the drill string. With the complexity of installing a damping device in the mast (with significant dimensions of shock absorbers and drilling of strong heterogeneous rocks), it is advisable to use a set of tools to reduce hydraulic pulsations in the mains and cylinders of the hydraulic system by installing chokes in the oil plants and pneumatic shock absorbers. It is proposed to use the device for the development of pneumatic hammers by a patent-pending drilling method with a hollow piston filled with magnetically active heavy liquid, which will allow controlling the frequency and size of the shock pulses and partially compensating for the drill string fluctuations arising from the uneven immersion of the bit in the array . It is noted that the proposed solutions increase the drilling speed by an average of 15%.

How to cite: Yungmeister D.A., Krupenskii I., Lavrenko S.A. Analysis of the options of modernization of roller-bit drilling machines with a submersible steamer // Journal of Mining Institute. 2018. Vol. 231 . p. 321-325. DOI: 10.25515/PMI.2018.3.321
Electromechanics and mechanical engineering
  • Date submitted
    2015-12-01
  • Date accepted
    2016-02-29
  • Date published
    2016-12-23

Simulation of diesel engine energy conversion processes

Article preview

In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed. The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.

How to cite: Afanasev A.S., Tretyakov A.A. Simulation of diesel engine energy conversion processes // Journal of Mining Institute. 2016. Vol. 222 . p. 839-844. DOI: 10.18454/PMI.2016.6.839
Mining
  • Date submitted
    2015-10-17
  • Date accepted
    2015-12-19
  • Date published
    2016-08-22

Improving the retention of minerals in the course of separating monolith from bedrock with the use of gas generator cartridges

Article preview

Results are presented on the effect of firing rate on pressure pulse in charge camera and fracture stress during spalling. Results are presented of comparative calculations using the equations of autocatalytic reactions of firing rates and escape of reaction products for the system of sodium chlorate - polythene (propylene) in pipe shape. Dependences are obtained of firing rate on concentration of gas generating mixture, its density, components size distribution and cartridge case size. Experimental and computational data were used to consider the conditions of firing turning into explosion for compositions based on sodium chlorate and hydrocarbons in layered and powdered systems. The relation is retrieved between the technological parameters of mining activities (blast hole to blast hole distance, blast hole diameter, depth of cartridge placement) and specific cartridge consumption along the spalling line with gas generators going off.

How to cite: Paramonov G.P., Kovalevskii V.N., Mozer P. Improving the retention of minerals in the course of separating monolith from bedrock with the use of gas generator cartridges // Journal of Mining Institute. 2016. Vol. 220 . p. 532-537. DOI: 10.18454/PMI.2016.4.532
Mining
  • Date submitted
    2014-12-11
  • Date accepted
    2015-02-11
  • Date published
    2015-12-25

Influence of the type of hardening treatment on wear-resistant materials of mining equipment

Article preview

For example, steel 110G13L as the material of teeth of excavator buckets, shows that the work hardening (hardening) is an effective means to increase (up to 10 times) the wear resistance of components in contact with abrasive media, such as marble, yielding the steel in a state of hard-ening of hardness. In the case of wear on the rocks (granite, gabbro) with a hardness greater than the hardness of steel, the effect of hardening has almost no effect. It was found that high-temperature thermomechanical treatment of steel 35HGSA as the material of holders of rotary cut-ters (strain at 900 С, water quenching, tempering at 230 С) leads to a substantial increase of its hardness (23 %) and durability (38 %) compared to typical heat treatment used in the manufacture of cutting tools at the factory.

How to cite: Bolobov V.I., Chupin S.A. Influence of the type of hardening treatment on wear-resistant materials of mining equipment // Journal of Mining Institute. 2015. Vol. 216 . p. 44-49.
Oil and gas
  • Date submitted
    2014-06-23
  • Date accepted
    2014-08-27
  • Date published
    2014-12-22

Theoretical aspects of the kinetics of gas hydrates

Article preview

In the systems of collection, preparation, transportation and processing of hydrocarbons in conditions of a certain temperature and pressure, gas hydrates, which adversely affect the operation of the processing equipment, are formed. To prevent hydrate formation, it is necessary to determine the time and rate of growth. For this purpose, physical and mathematical models describing the growth of crystalline hydrates are being designed and developed. The developed models differ from one other. The reason for the difference is that each model is designed for specific temperature and pressure conditions and individual gas hydrates (or mixtures). The main theoretical models describing the process of growth of hydrates under different conditions are presented.

How to cite: Zaporozhets E.P., Shostak N.A. Theoretical aspects of the kinetics of gas hydrates // Journal of Mining Institute. 2014. Vol. 210 . p. 11-20.