Submit an Article
Become a reviewer

Search articles for by keywords:
strip roll casting

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-06-04
  • Date accepted
    2025-01-28
  • Date published
    2025-04-04

Impact of dry and wet magnetic separator process parameters on iron oxide removal from Egyptian feldspar ore

Article preview

The demand for feldspar as a raw material in the ceramic industry is continuously increasing. Feldspar is abundant in the Earth's crust and typically found alongside other silicate minerals, as well as titanium and iron oxides. This study aims to reduce the iron oxide content in feldspar ore from the Wadi Zirib region and achieve an optimal grade of feldspar concentrate for various industrial uses. The research involved dry and wet magnetic separation techniques followed by leaching with oxalic and citric acids to minimize iron impurities and enhance optical properties. The factors affecting the dry magnetic separation, for feldspar size of –250+45 µm, were optimized using the Box – Behnken factorial design and a non-magnetic concentrate with 0.29 % Fe2O3 and an 92.19 % feldspar yield was obtained. The wet magnetic separation for feldspar fines of size –45µm was optimized and a concentrate with 0.27 % Fe2O3 was achieved. The acid leaching was conducted on the non-magnetic feldspar concentrates using oxalic and citric acid. Oxalic acid was more successful in reducing iron oxide of dry (to 0.19 %) and wet (to 0.12 %) non-magnetic feldspar concentrates. The optical properties of the leached concentrates were improved compared to the original sample, as the whiteness improved up to 90 %.

How to cite: Yassin K.E., El-Sayed H.R., Elbendari A.M. Impact of dry and wet magnetic separator process parameters on iron oxide removal from Egyptian feldspar ore // Journal of Mining Institute. 2025. p. EDN RWLRDI
Energy industry
  • Date submitted
    2023-10-29
  • Date accepted
    2024-04-08
  • Date published
    2025-02-25

Evaluation of the impact of the distance determination function on the results of optimization of the geographical placement of renewable energy sources-based generation using a metaheuristic algorithm

Article preview

Since the United Power System was created electrical supply of remote and hard-to-reach areas remains one of the topical issues for the power industry of Russia. Nowadays, usage of various renewable energy sources to supply electricity at remote areas has become feasible alternative to usage of diesel-based generation. It becomes more suitable with world decarbonization trends, the doctrine of energy security of Russia directives, and equipment cost decreasing for renewable energy sources-based power plants construction. Geological exploration is usually conducted at remote territories, where the centralized electrical supply can not be realized. Placement of large capacity renewable energy sources-based generation at the areas of geological expeditions looks perspective due to development of industrial clusters and residential consumers of electrical energy at those territories later on. Various metaheuristic methods are used to solve the task of optimal renewable energy sources-based generation geographical placement. The efficiency of metaheuristics depends on proper tuning of that methods hyperparameters, and high quality of big amount of meteorological and climatic data. The research of the effects of the calculation methods defining distance between agents of the algorithm on the optimization of renewable generation placement results is presented in this article. Two methods were studied: Euclidean distance and haversine distance. There were two cases considered to evaluate the effects of distance calculation method change. The first one was for a photovoltaic power plant with installed capacity of 45 MW placement at the Vagaiskii district of the Tyumen region. The second one was for a wind power plant with installed capacity of 25 MW at the Tungokochenskii district of the Trans-Baikal territory. The obtained results show low effects of distance calculation method change at average but the importance of its proper choose in case of wind power optimal placement, especially for local optima’s identification.

How to cite: Bramm A.M., Eroshenko S.A. Evaluation of the impact of the distance determination function on the results of optimization of the geographical placement of renewable energy sources-based generation using a metaheuristic algorithm // Journal of Mining Institute. 2025. Vol. 271 . p. 141-153. EDN JSNZWK
Energy industry
  • Date submitted
    2023-11-10
  • Date accepted
    2024-06-03
  • Date published
    2025-02-25

Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations

Article preview

The objective of this study is to enhance user trust in electricity consumption forecasting systems for mining enterprises by applying explainable artificial intelligence methods that provide not only forecasts but also their justifications. The research object comprises a complex of mines and ore processing plants of a company purchasing electricity on the wholesale electricity and power market. Hourly electricity consumption data for two years, schedules of planned repairs and equipment shutdowns, and meteorological data were utilized. Ensemble decision trees were applied for time series forecasting, and an analysis of the impact of various factors on forecasting accuracy was conducted. An algorithm for interpreting forecast results using the SHapley Additive exPlanation method was proposed. The mean absolute percentage error was 7.84 % with consideration of meteorological factors, 7.41 % with consideration of meteorological factors and a load plan formulated by an expert, and the expert's forecast error was 9.85 %. The results indicate that the increased accuracy of electricity consumption forecasting, considering additional factors, further improves when combining machine learning methods with expert evaluation. The development of such a system is only feasible using explainable artificial intelligence models.

How to cite: Matrenin P.V., Stepanova A.I. Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations // Journal of Mining Institute. 2025. Vol. 271 . p. 154-167. EDN DEFRIP
Energy industry
  • Date submitted
    2021-05-12
  • Date accepted
    2022-05-11
  • Date published
    2023-07-19

Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption

Article preview

The article considers a cybernetic model for the price-dependent demand response (DR) consumed by an underground mining enterprise (UGME), in particular, the main fan unit (MFU). A scheme of the model for managing the energy consumption of a MFU in the DR mode and the implementation of the cybernetic approach to the DR based on the IoT platform are proposed. The main functional requirements and the algorithm of the platform operation are described, the interaction of the platform with the UGME digital model simulator, on which the processes associated with the implementation of the technological process of ventilation and electricity demand response will be simulated in advance, is shown. The results of modeling the reduction in the load on the MFU of a mining enterprise for the day ahead are given. The presented solution makes it possible to determine in advance the necessary power consumption for the operation of the main power supply unit, manage its operation in an energy-saving mode and take into account the predicted changes in the planned one (e.g., when men hoisting along an air shaft) and unscheduled (e.g., when changing outdoor air parameters) modes. The results of the study can be used to reduce the cost of UGME without compromising the safety of technological processes, both through the implementation of energy-saving technical, technological or other measures, and with the participation of enterprises in the DR market. The proposed model ensures a guaranteed receipt of financial compensation for the UGME due to a reasonable change in the power consumption profile of the MFU during the hours of high demand for electricity, set by the system operator of the Unified Energy System.

How to cite: Nikolaev A.V., Vöth S., Kychkin A.V. Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption // Journal of Mining Institute. 2023. Vol. 261 . p. 403-414. DOI: 10.31897/PMI.2022.33
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Forecasting planned electricity consumption for the united power system using machine learning

Article preview

The paper presents the results of studies of the predictive models development based on retrospective data on planned electricity consumption in the region with a significant share of enterprises in the mineral resource complex. Since the energy intensity of the industry remains quite high, the task of rationalizing the consumption of electricity is relevant. One of the ways to improve control accuracy when planning energy costs is to forecast electrical loads. Despite the large number of scientific papers on the topic of electricity consumption forecasting, this problem remains relevant due to the changing requirements of the wholesale electricity and power market to the accuracy of forecasts. Therefore, the purpose of this study is to support management decisions in the process of planning the volume of electricity consumption. To realize this, it is necessary to create a predictive model and determine the prospective power consumption of the power system. For this purpose, the collection and analysis of initial data, their preprocessing, selection of features, creation of models, and their optimization were carried out. The created models are based on historical data on planned power consumption, power system performance (frequency), as well as meteorological data. The research methods were: ensemble methods of machine learning (random forest, gradient boosting algorithms, such as XGBoost and CatBoost) and a long short-term memory recurrent neural network model (LSTM). The models obtained as a result of the conducted studies allow creating short-term forecasts of power consumption with a fairly high precision (for a period from one day to a week). The use of models based on gradient boosting algorithms and neural network models made it possible to obtain a forecast with an error of less than 1 %, which makes it possible to recommend the models described in the paper for use in forecasting the planned electricity power consumption of united power systems.

How to cite: Klyuev R.V., Morgoeva A.D., Gavrina O.A., Bosikov I.I., Morgoev I.D. Forecasting planned electricity consumption for the united power system using machine learning // Journal of Mining Institute. 2023. Vol. 261 . p. 392-402. EDN FJGZTV
Energy industry
  • Date submitted
    2022-10-26
  • Date accepted
    2023-02-13
  • Date published
    2023-07-19

Determination of the grid impedance in power consumption modes with harmonics

Article preview

The paper investigates the harmonic impedance determination of the power supply system of a mining enterprise. This parameter is important when calculating modes with voltage distortions, since the determined parameters of harmonic currents and voltages significantly depend on its value, which allow the most accurate modeling of processes in the presence of distortions in voltage and current. The power supply system of subsurface mining is considered, which is characterized by a significant branching of the electrical network and the presence of powerful nonlinear loads leading to a decrease in the power quality at a production site. The modernization of the mining process, the integration of automated electrical drive systems, renewable energy sources, energy-saving technologies lead to an increase in the energy efficiency of production, but also to a decrease in the power quality, in particular, to an increase in the level of voltage harmonics. The problem of determining the grid harmonic impedance is solved in order to improve the quality of design and operation of power supply systems for mining enterprises, taking into account the peculiarities of their workload in the extraction of solid minerals by underground method. The paper considers the possibility of determining the grid impedance based on the measurement of non-characteristic harmonics generated by a special nonlinear load. A thyristor power controller based on phase regulation of the output voltage is considered as such a load. Simulation computer modeling and experimental studies on a laboratory test bench are used to confirm the proposed method. The recommendations for selecting load parameters and measuring device connection nodes have been developed.

How to cite: Skamyin A.N., Dobush V.S., Jopri M.H. Determination of the grid impedance in power consumption modes with harmonics // Journal of Mining Institute. 2023. Vol. 261 . p. 443-454. DOI: 10.31897/PMI.2023.25
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-31
  • Date accepted
    2022-04-26
  • Date published
    2022-07-13

Identification of structural control factors of primary gold ore occurrences by method of unmanned aeromagnetic survey by the example of the Neryungrisky district of Yakutia

Article preview

The long-term development of the geophysical industry, in which the methods of magnetometry are in maximum demand, as the simplest in instrumental and methodological execution, has determined the development of remote measurement methods implemented both from space and airborne carriers. The necessity to use the latter as an obligatory component of field surveys, providing coverage of significant areas, determines the need for using the unmanned low-tonnage carriers. Their use is implemented to search for predictive elements of structural (spatial, genetic) control of endogenous gold ore occurrences that allow predictive constructions, i.e., solving the problem of increasing gold reserves, which is being performed within the framework of federal programs. The purpose of the survey is to develop a system of instrumental and subsequent interpretation approaches in the organization of unmanned magnetometer survey, implemented for structural and geological mapping by the example of the Neryungrinsky district of Yakutia. Within the framework of the digital model formation of the relief and the anomalous magnetic field, a survey method using an unmanned aircraft, its technical characteristics are considered; the analysis and the author's modification of the office analysis of magnetometry data are performed. Based on the obtained materials, a physical and geological model of the investigated area was created, which is presented in the form of a geological and structural cut, accompanied by the physical characteristics of the structural and material complexes. The refinement of the physical and geological model was implemented by a joint morphostructural analysis of the remote base and the anomalous magnetic field using the results of quantative interpretation of the anomalous magnetic field. The result of the study is presented by an updated geological basis with the allocation of promising ore sites for their detailing as part of the planned large-scale geological and geophysical surveys. The scientific novelty of the work consists in the synthesis of the tried and tested methods of unmanned aeromagnetometric measurements and geostructural reconstructions, which allow the processing of both potential and non-potential geofields.

How to cite: Movchan I.B., Shaygallyamova Z.I., Yakovleva A.A. Identification of structural control factors of primary gold ore occurrences by method of unmanned aeromagnetic survey by the example of the Neryungrisky district of Yakutia // Journal of Mining Institute. 2022. Vol. 254 . p. 217-233. DOI: 10.31897/PMI.2022.23
Geology
  • Date submitted
    2020-06-13
  • Date accepted
    2020-06-14
  • Date published
    2020-06-30

Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia

Article preview

We investigated the deep structure of the lithosphere and the geodynamic conditions of granitoid magmatism in the Eastern Russia within the borders of the Far Eastern Federal District. The relevance of the work is determined by the need to establish the geotectonic and geodynamic conditions of the granitoids petrogenesis and ore genesis in the Russian sector of the Pacific Ore Belt. The purpose of the article is to study the deep structure of the lithosphere and determine the geodynamic conditions of granitoid magmatism in the East of Russia. The author's data on the magmatism of ore regions, regional granitoids correlations, archive and published State Geological Map data, survey mapping, deep seismic sounding of the earth's crust, gravimetric survey, geothermal exploration, and other geophysical data obtained along geotraverses. The magma-controlling concentric geostructures of the region are distinguished and their deep structure is studied. The connection of plume magmatism with deep structures is traced. The chain of concentric geostructures of Eastern Russia controls the trans-regional zone of leucocratization of the earth's crust with a width of more than 1000 km, which includes the Far Eastern zone of Li-F granites. Magmacontrolling concentric geostructures are concentrated in three granitoid provinces: Novosibirsk-Chukotka, Yano-Kolyma, and Sikhote-Alin. The driving force of geodynamic processes and granitoid magmatism was mantle heat fluxes in the reduced zones of the lithospheric slab. The distribution of slab windows along the Pacific mobile belt's strike determines the location of concentric geostructures and the magnitude of granitoid magmatism in the regional provinces. Mantle diapirs are the cores of granitoid ore-magmatic systems. The location of the most important ore regions of the Eastern Russia in concentric geostructures surrounded by annuli of negative gravity anomalies is the most important regional metallogenic pattern reflecting the correlation between ore content and deep structure of the earth's crust.

How to cite: Alekseev V.I. Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia // Journal of Mining Institute. 2020. Vol. 243 . p. 259-265. DOI: 10.31897/PMI.2020.3.259
Mining
  • Date submitted
    2020-05-05
  • Date accepted
    2020-05-24
  • Date published
    2020-06-30

Justification of stripping and development of a modular mine site for a combined coal mining method in Kuzbass on the example Baikaimskaya mine site

Article preview

The article considers one actual method for development coal deposits in the Kuzbass by open-underground mining. The scientific and practical advantages of the proposed method due to the use of common infrastructure of coal mine and a modular mine site (subsequently transformed into a mining and technological structure operating according to the mine – longwall scheme) are presented. Currently, a development strategy for Kuzbass until 2035 has been developed. As part of the strategy, a draft program for subsoil use is being formed in the coal industry department. The program should take into account all the positive and negative aspects associated with coal mining in cities and municipal areas and also their prospects. In the Kuznetsk coal basin, 42 mines and 52 opencast mines are mining, of which 12 enterprises use partially unified infrastructure. According to the results of open-underground mining work conducted by the laboratory of the Institute of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences (Institute of Coal SB RAS), the list of sites includes favorable mining and geological conditions with incidence angles of up to 18 degrees. As open-pit coal production increases, many sites encounter such a parameter as maximum allowable (boundary) strip ratio. At the stage of preparing the feasibility study for the development of a coal deposit, this coefficient is calculated first of all, since duration of enterprise’s work and its economic component depend on it. In order to increase parameters, it is necessary to carry out transition from open works to underground. As a result, coal mine will not work at a loss, providing production with an economically disadvantageous strip ratio.

How to cite: Shishkov R.I., Fedorin V.A. Justification of stripping and development of a modular mine site for a combined coal mining method in Kuzbass on the example Baikaimskaya mine site // Journal of Mining Institute. 2020. Vol. 243 . p. 293-298. DOI: 10.31897/PMI.2020.3.293
Electromechanics and mechanical engineering
  • Date submitted
    2020-01-09
  • Date accepted
    2020-01-26
  • Date published
    2020-02-25

Mining excavator working equipment load forecasting according to a fuzzy-logistic model

Article preview

Due to the fact that the loads occurring in the working equipment of mining excavators are determined by a large number of random factors that are difficult to represent by analytical formulas, for estimating and predicting loads the models must be introduced using non-standard approaches. In this study, we used the methodology of the theory of fuzzy logic and fuzzy pluralities, which allows to overcome the difficulties associated with the incompleteness and vagueness of the data in assessing and predicting the forces encountered in the working equipment of mining excavators, as well as with the qualitative nature of these data. As a result of computer simulation in the fuzzyTECH environment, data comparable with experimental studies were obtained to determine the level of loading of the main elements of the working equipment of mining excavators. Based on a representative sample, a statistical analysis of the data was performed, as a result of which the equation of linear multiple stress regression in the handle of mining excavators was obtained, which allows to make an accurate forecast of the loading of the working equipment of the excavator.

How to cite: Velikanov V.S. Mining excavator working equipment load forecasting according to a fuzzy-logistic model // Journal of Mining Institute. 2020. Vol. 241 . p. 29-36. DOI: 10.31897/PMI.2020.1.29
Electromechanics and mechanical engineering
  • Date submitted
    2019-07-07
  • Date accepted
    2019-09-13
  • Date published
    2019-12-24

Installation for experimental research of multiphase electromechanical systems

Article preview

The subject of this study is an installation for experimental research designed to study the characteristics and control algorithms of multiphase motors with the number of working phases from 3 to 8, connected by a star, a triangle, or in another way, allowing phase currents to flow, creating a rotating electromagnetic field. The installation consists of two separate independent units: a controller, or a human-machine control interface, and a power inverter module (converter). The controller is connected to the converter by a two-wire half-duplex interface (RS485) via the Modbus RTU communication protocol. The installation also includes synchronous motors with the number of phases 3, 5, 7. Using the developed installation for experimental research, it is possible to carry out experimental studies of multiphase motors when implementing various control algorithms for a converter that implements pulse-width vector modulation. The time required to implement control algorithms is minimal. According to the results of the experiments, it is possible to carry out a comparative analysis of multiphase motors in terms of energy efficiency, in terms of vibration of electromagnetic origin, in dynamic parameters. An experimental assessment of the load of the converter keys is possible. The created installation is an effective tool for checking the reliability of the results of theoretical studies of electromechanical systems based on multiphase motors.

How to cite: Tereshkin V.M., Grishin D.A., Makulov I.A. Installation for experimental research of multiphase electromechanical systems // Journal of Mining Institute. 2019. Vol. 240 . p. 678-685. DOI: 10.31897/PMI.2019.6.678
Electromechanics and mechanical engineering
  • Date submitted
    2018-11-13
  • Date accepted
    2019-01-23
  • Date published
    2019-04-23

Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation

Article preview

The balance of electricity consumption a significant part is occupied by the production of compressed air at the mining enterprises. Many compressor stations of enterprises are equipped with automated parameter management systems that allow reliable, uninterrupted and safe operation of the compressor facilities. But the majority of automation systems at compressor stations do not perform the function of monitoring the energy efficiency indicators of the operation of a compressor station. The article discusses the issue of including compressed air flow sensors (flow meters) in an automated control system of a compressor station, which allows you to control the production of compressed air and the consumption of electrical energy for its production. Monitoring and recording of these parameters makes it possible, using microprocessor technology, to control one of the main indicators of energy efficiency – the specific energy consumption for producing one cubic meter of compressed air, determine how efficiently the compressor station works, and take appropriate measures to reduce specific energy consumption in time. . The use of additional functions of automated control and monitoring systems will allow the development and application of energy-saving measures aimed at improving the energy efficiency of the enterprise, which will lead to a reduction in the cost of finished products and increase their competitiveness

How to cite: Ugolnikov A.V., Makarov N.V. Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation // Journal of Mining Institute. 2019. Vol. 236 . p. 245-248. DOI: 10.31897/PMI.2019.2.245
Oil and gas
  • Date submitted
    2018-01-15
  • Date accepted
    2018-03-24
  • Date published
    2018-06-22

Designing of well trajectory for efficient drilling by rotary controlled systems

Article preview

The main directions of increasing the efficiency of drilling wells by improving methods for designing profiles of directional and horizontal wells are identified. The feasibility and necessity of using at drilling with rotary controlled systems the trajectories of directed wells' profiles with continuous curving, that do not contain conjugated sections, on the basis of plane transcendental curves are theoretically substantiated and experimentally confirmed. An algorithm and software are developed that allow optimal selection of a profile or a trajectory section, taking into account minimization of twisting, bending, compressive and tensile stresses that ensure the efficiency of technical and technological parameters of well drilling.

How to cite: Dvoinikov M.V. Designing of well trajectory for efficient drilling by rotary controlled systems // Journal of Mining Institute. 2018. Vol. 231 . p. 254-262. DOI: 10.25515/PMI.2018.3.254
Mining
  • Date submitted
    2018-01-04
  • Date accepted
    2018-03-08
  • Date published
    2018-06-22

Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores

Article preview

The paper presents the results of borehole stability research and considers possible causes of emergencies. The features of the blast hole drilling process are analyzed taking into account the properties of the rock. Based on the distribution of speed of drill fines removal from the well, an algorithm for selecting drilling modes is proposed. The nature of change in the size of the holess over time has been analyzed. This paper investigates the influence of rock fracturing and its water content on borehole stability. Possible options for eliminating the man-made impact on the massif near holes and options for fixing the hole walls with soft shells are suggested. The experimental data on the installation of shells for the conditions of open mining of apatite-nepheline ores are given. The operability and effectiveness of the technology is proved.

How to cite: Overchenko M.N., Tolstunov S.A., Mozer S.P. Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores // Journal of Mining Institute. 2018. Vol. 231 . p. 239-244. DOI: 10.25515/PMI.2018.3.239
Electromechanics and mechanical engineering
  • Date submitted
    2017-09-03
  • Date accepted
    2017-11-04
  • Date published
    2018-02-22

Development of sensorless vector control system for permanent magnet synchronous motor in Matlab Simulink

Article preview

In last 20 years segment of electric drives with permanent magnet synchronous motors has increased. This type of motors has better technical characteristics compared to induction motors, but has problems in actual implementation, one of which is the requirement of rotor position data. It is possible to implement with use of sensors or without them by means of motor state observer. The paper describes problems of sensorless vector control system for permanent magnet synchronous motors. The vector control system with state observer for permanent magnet synchronous motors is described. Synthesis of sliding mode observer for rotor speed and position is presented. The algorithm is implemented by development of model in Matlab Simulink environment with support by Texas Instruments processors support blocks. Experimental comparison of results of rotor angle state calculation and the data obtained by rotor position sensors was conducted. Research objective is a development of control algorithm, which has required precision for calculation of rotor start angle, high range of speed regulation and resistance to drift of motor parameters.

How to cite: Frolov V.Y., Zhiligotov R.I. Development of sensorless vector control system for permanent magnet synchronous motor in Matlab Simulink // Journal of Mining Institute. 2018. Vol. 229 . p. 92-97. DOI: 10.25515/PMI.2018.1.92
Geology
  • Date submitted
    2016-11-18
  • Date accepted
    2016-12-28
  • Date published
    2017-04-14

Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse

Article preview

The paper describes theory, method and first experimental results of research on the interaction between electromagnetic waves of extremely low and ultra low frequency (0.1-200 Hz), the Earth crust and ionosphere in the field of two mutually orthogonal industrial power lines, 109 and 120 km long, in the course of FENICS experiment (Fennoscandian Electrical conductivity from Natural and Induction Control Source soundings). The main focus was on the observation results along the line of Karelia-Kola geotraverse over a distance of 700 km from the source. High horizontal homogeneity of geoelectrical lithosphere section has been detected in the eastern part of the Baltic shield at depth range from 10-15 to 50-70 km. Parameters of «regular» lithosphere section have been specified to the depth of 60-70 km. As a result of inverse problem solution for the western part of Karelia and Central Finland, a zone of decreased transverse resistivity has been detected at the depth of 50-60 km, corresponding to the area, detected by seismic methods, where Moho boundary reaches the same depth.

How to cite: Shevtsov A.N., Zhamaletdinov A.A., Kolobov V.V., Barannik M.B. Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse // Journal of Mining Institute. 2017. Vol. 224 . p. 178-188. DOI: 10.18454/PMI.2017.2.178
Mining
  • Date submitted
    2016-09-04
  • Date accepted
    2016-11-14
  • Date published
    2017-02-22

Methodology of reducing rock bump hazard during room and rillar mining of North Ural deep bauxite deposits

Article preview

The article describes practical experience of using room and pillar mining (RAPM) under conditions of deep horizons and dynamic overburden pressure. It was identified that methods of rock pressure control efficient at high horizons do not meet safety requirements when working at existing depths, that is explained by changes in geodynamic processes during mining. With deeper depth, the geodynamic processes become more intensive and number of pillar and roof failures increase. When working at 800 m the breakage of mine structures became massive and unpredictable, which paused a question of development and implementation of tools for compliance assessment of used elements of RAPM and mining, geological, technical and geodynamic conditions of North Ural bauxite deposits and further development of guidelines for safe mining under conditions of deep horizons and dynamic rock pressure. It describes reasons of mine structure failures in workings depending on natural and man-caused factors, determines possible hazards and objects of geomechanic support. It also includes compliance assessment of tools used for calculations of RAPM structures, forecast and measures for rock tectonic bursts at mines of OAO “Sevuralboksitruda” (SUBR). It describes modernization and development of new geomechanic support of RAPM considering natural and technogenic hazards. The article presents results of experimental testing of new parameters of RAPM construction elements of SUBR mines. It has data on industrial implementation of developed regulatory and guideline documents at these mines for identification of valid parameters of RAPM elements at deep depths.

How to cite: Sidorov D.V. Methodology of reducing rock bump hazard during room and rillar mining of North Ural deep bauxite deposits // Journal of Mining Institute. 2017. Vol. 223 . p. 58-69. DOI: 10.18454/PMI.2017.1.58
Metallurgy and concentration
  • Date submitted
    2015-12-13
  • Date accepted
    2016-02-23
  • Date published
    2016-12-23

Properties isotropy of magnesium alloy strip workpieces

Article preview

The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling and annealing. The principal causes of anisotropic mechanical properties of metal strips produced by the combined casting and rolling technique are the character of distribution of intermetallic compounds in the strip, orientation of phases of metal defects and the residual tensions. One of the tasks in increasing the output of fit products during stamping operations consists in minimizing the amount of defects. To lower the level of anisotropy in mechanical properties various ways of treating the melt during casting are suggested. Designing the technology of producing strips of magnesium alloys opens a possibility of using them in automobile industry to manufacture light-weight body elements instead of those made of steel.

How to cite: Kavalla R., Bazhin V.Y. Properties isotropy of magnesium alloy strip workpieces // Journal of Mining Institute. 2016. Vol. 222 . p. 828-832. DOI: 10.18454/PMI.2016.6.828
Mining
  • Date submitted
    2014-12-07
  • Date accepted
    2015-02-23
  • Date published
    2015-12-25

Bump hazard evaluation of a rock mass area as a result of its seismic acoustic activity registration

Article preview

Ore production in deep rock-bump hazardous mines is closely connected with the need to in-crease workers’ safety, which demands heavy costs of taking preventive shockproof actions and applying expensive protection systems against mountain blows. The article considers a resource forecasting technique and a bump hazard evaluation method for a rock mass area, based on a mi-cromechanical model, which registers acoustic emission of heterogeneous materials, and empirical data, obtained as a result of acoustic signals registration with the help of the model, aimed at seis-mic-acoustic activity evaluation at «Taimir» and «Oktyabrsky» rock mass areas, belonging to Norylsk industrial region.

How to cite: Nosov V.V. Bump hazard evaluation of a rock mass area as a result of its seismic acoustic activity registration // Journal of Mining Institute. 2015. Vol. 216 . p. 62-75.
Metallurgy and concentration
  • Date submitted
    2014-10-15
  • Date accepted
    2014-12-14
  • Date published
    2015-08-25

Formiing of structure and properties of sheet strips from magnesium alloys in the conditions of twin roll casting process

Article preview

In this article the problem of receiving high-quality cast strips from the magnesium alloys received by units of twin roll casting process in the combined methods is discussed. Production of sheets from magnesium alloys combination of casting and rolling at continuous giving of liquid melt to the rotating rolls is perspective and more economic method. Features of crystallization of magnesium alloys of AZ31 and AZ61 in a gap of rolls crystallizers depending on heat exchange conditions at change of technological parameters are considered. Due to impact on melt in forming system it is possible to provide formation of equal fine-grained structure of sheet hire without superficial defects. Development of the production technology of sheets from magnesium alloys creates possibility of their use of automobile branch as the facilitated details of bodies instead of the knots made of steel.

How to cite: Kavalla R., Bazhin V.Y. Formiing of structure and properties of sheet strips from magnesium alloys in the conditions of twin roll casting process // Journal of Mining Institute. 2015. Vol. 214 . p. 33-38.
Mining machine, electrical engineering and electromechanics
  • Date submitted
    2010-07-20
  • Date accepted
    2010-09-14
  • Date published
    2011-03-21

The physical breadboard model of dynamically counterbalanced drilling string with swinging movement with the asynchronous electric drive powered by inverter laboratory experimental researche

Article preview

The laboratory experimental stand for research of the asynchronous resonant electric drive on a physical breadboard model of dynamically counterbalanced drilling string is developed. The asynchronous electric drive with swinging movement the autoresonant oscillation mode is realized.

How to cite: Ivanik V.V. The physical breadboard model of dynamically counterbalanced drilling string with swinging movement with the asynchronous electric drive powered by inverter laboratory experimental researche // Journal of Mining Institute. 2011. Vol. 189 . p. 99-102.
Geology and geophsics
  • Date submitted
    2010-07-11
  • Date accepted
    2010-09-14
  • Date published
    2011-03-21

Application of seismic reflection method for engineering-geological issues solving in Saint Petersburg and Leningrad region

Article preview

Several examples of seismic reflection method test surveys in St.-Petersburg and its suburbs are reviewed. The key point of research was the choice of an optimum field seismic works technique, processing and interpretation technique, providing the reliable solution of shallow depth investigation for the presented area.

How to cite: Yakovlev A.S. Application of seismic reflection method for engineering-geological issues solving in Saint Petersburg and Leningrad region // Journal of Mining Institute. 2011. Vol. 189 . p. 76-78.
Geology and geophsics
  • Date submitted
    2010-07-14
  • Date accepted
    2010-09-29
  • Date published
    2011-03-21

Basic requirements for shallow seismic field works technique by the reflected waves method for engineering-geological issues solving

Article preview

The main requirements for the shallow seismic field works technique parameters for engineer-geological issues solving are represented. The optimum technique for the St.-Petersburg and its suburbs territory based on the results of experimental seismic studies, providing a detailed study of the upper part of the geological section, are proved.

How to cite: Telegin A.N., Yakovlev A.S. Basic requirements for shallow seismic field works technique by the reflected waves method for engineering-geological issues solving // Journal of Mining Institute. 2011. Vol. 189 . p. 72-75.
Problems in geodynamic safety in the exploration of solid deposits
  • Date submitted
    2009-10-28
  • Date accepted
    2009-12-25
  • Date published
    2010-09-22

Prediction of dynamic manifestations of rock pressure in the all over automated longwalls

Article preview

The support control system «MARCO» has programs for the estimation of a geomechanical situation around the face by continuous measurements of pressure in the legs of support. The analysis of the face convergence allows to predict the possibility of a rock burst. The seam’s reaction on the shearer or plough influence may be the dangerous main roof collapse into the mine-out space of longwall.

How to cite: Roiter M., Kurfyurst V., Mairkhofer K., Veksler J. Prediction of dynamic manifestations of rock pressure in the all over automated longwalls // Journal of Mining Institute. 2010. Vol. 188 . p. 36-39.
Geotechnical engineering, powerengineering and automation
  • Date submitted
    2009-08-02
  • Date accepted
    2009-10-29
  • Date published
    2010-02-01

Forecasting the power consumption of mines on the basis of stochastic time-series models

Article preview

The paper is devoted to building up time series models to forecast the power consumption of a mine. The results discussed are obtained using various linear filter models and artificial neural network. The wavelet transform of the raw time series is shown to be an efficient technique to increase the forecasting accuracy.

How to cite: Chernysh A.A., Shonin O.B. Forecasting the power consumption of mines on the basis of stochastic time-series models // Journal of Mining Institute. 2010. Vol. 186 . p. 165-169.