-
Date submitted2024-05-28
-
Date accepted2024-11-07
-
Date published2024-12-25
Methods of intensification of pipeline transportation of hydraulic mixtures when backfilling mined-out spaces
The paper presents an analysis of the advantages and limitations of additional measures to intensify the transportation of the backfill hydraulic mixture flow. The results of the analysis of the conditions for using pumping equipment to move flows with different rheological properties are shown. Generalizations of the methods for influencing the internal resistance of backfill hydraulic mixtures by means of mechanical activation, as well as increasing fluidity due to the use of chemical additives are given. The article presents the results of studies confirming the feasibility of using pipes with polymer lining, which has proven its efficiency in pumping flows of hydraulic mixtures with different filler concentrations. An analytical model of hydraulic mixture movement in the pipeline of the stowage complex has been developed. The trends in pressure change required to ensure the movement of hydraulic mixture in pipelines of different diameters are exponential, provided that the flow properties are constant. The effect of particle size on the motion mode of the formed heterogeneous flow, as well as on the distribution of flow density over the cross-section, characterizing the stratification and change in the rheological properties of the backfill hydraulic mixture, is assessed. An analytical model of centralized migration of the dispersed phase of the hydraulic mixture flow is formulated, describing the effect of turbulent mixing of the flow on the behavior of solid particles. An assessment of the secondary dispersion of the solid fraction of the hydraulic mixture, which causes a change in the consistency of the flow, was performed. The studies of the influence of the coefficient of consistency of the flow revealed that overgrinding of the fractions of the filler of the hydraulic mixture contributes to an increase in the required pressure in the pipeline system.
-
Date submitted2022-07-10
-
Date accepted2023-06-20
-
Date published2024-02-29
Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline
A mathematical model of the in-line control of the insulation resistance state for cathodically polarized main pipelines according to electrometry data is considered. The relevance of the work is caused by the opportunity to create in-line internal isolation defects indicators of the main pipelines for transported liquids that are good conductors and expand the functionality of monitoring and controlling cathodic protection systems of the main pipelines. Features of the mathematical model are: consideration of the electric conductivity of transported liquid influence on electric field distribution; consideration of the influence of external and internal insulating coating resistance; use of the electric field of an in-line diagnostic probe for quality control of internal insulation. Practical significance consists in the development of modeling methods for control subsystems of main pipeline protection against corrosion and the development of special mathematical and algorithmic support systems for monitoring and controlling the operating modes of the cathodic protection station of main pipelines.
-
Date submitted2022-09-30
-
Date accepted2022-11-28
-
Date published2022-12-29
Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies
The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.
-
Date submitted2022-05-18
-
Date accepted2022-07-21
-
Date published2022-11-10
Improving the method for assessment of bending stresses in the wall of an underground pipeline
- Authors:
- Ruslan V. Aginey
- Alexei A. Firstov
Brief information about modern methods for determining the bending stresses of the extended sections of underground main pipelines without access to the pipeline generatrix is given. The necessity of modernizing methods based on determining the configuration of the pipeline axis from the soil surface with subsequent calculation of bending stresses based on the obtained data is substantiated. A mathematical model that allows to calculate the optimal parameters for surveying the axis of the pipeline from the soil surface for a pipeline of arbitrary configuration and depth, when planning a study, is proposed. Bench tests of the BITA-1 pipeline finder were carried out to determine the error in measuring the depth of the pipeline axis. It is proved that the deviations of the pipeline finder data relative to the true values in narrow depth intervals follow a normal distribution and do not change their sign. The confidence intervals of the error in determining the depth of the pipeline axis for the BITA-1 device are presented.
-
Date submitted2021-04-30
-
Date accepted2021-11-30
-
Date published2021-12-27
Methodology for testing pipeline steels for resistance to grooving corrosion
- Authors:
- Viktor I. Bolobov
- Grigoriy G. Popov
The methodology for testing pipeline steels is suggested on the assumption that for the destruction of pipes in field oil pipelines by the mechanism of grooving corrosion the simultaneous fulfillment of such conditions as the occurrence of scratches on the lower generatrix of the pipe, eventually growing into a channel in the form of a groove, emulsion enrichment with oxygen, presence of pipe wall metal in a stressed state, presence of chlorine-ion in the oil-water emulsion is required. Tests are suggested to be carried out in 3 % aqueous solution of NaCl with continuous aeration by air on bent plates 150×15×3 mm, made of the analyzed steel, the middle part of which is under the action of residual stresses σ res , close to the level of maximum equivalent stresses σ eqv in the wall of the oil pipeline, with the presence of a cut on this part on the inner side of the plate as an initiator of additional mechanical stresses. Using the value of the modulus of normal elasticity of the analyzed steel, the degree of residual strain of the elastic-plastic body from this material, corresponding to the value σ res ≈ σ eqv is calculated, based on which the plates are bent to the required deflection angle, after which the cut is applied to them. After keeping the plates in the corrosive medium for each of them the increase in depth of the cut as a result of corrosion of the walls by the corrosive medium is analyzed, from which the rate of steel K by the mechanism of grooving corrosion is calculated taking into account the duration of tests. Corrosion rate values for two pipe steel grades determined by the suggested procedure are given. The comparison of K values obtained leads to the conclusion about the higher resistance to grooving corrosion of 09G2S steel.
-
Date submitted2021-02-28
-
Date accepted2021-11-30
-
Date published2021-12-27
Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation
- Authors:
- Alexander K. Nikolaev
- Natalia А. Zaripova
One of the development priorities in oil and gas industry is to maintain gas and oil pipeline networks and develop pipeline-connected gas and oil fields of the Arctic zone of the Russian Federation, a promising region the resource potential of which will not only meet a significant portion of internal and external demand for various types of raw materials and primary energy carriers, but will also bring great economic benefits to subsoil users and the state. The mineral and raw material centers of the Nadym-Purskiy and Pur-Tazovskskiy oil and gas bearing areas are among the most attractive regions of the Arctic zone. It is necessary to develop a scientifically substantiated approach to improve the methods of oil transportation from the field to the existing pipelines. As it is known, the task of increasing the efficiency of pipeline transportation of high-viscosity oil is inseparably connected with solving problems in the field of thermal and hydraulic calculation of pipeline system. The article presents the substantiation of dependencies for hydraulic calculation of pipelines transporting high-viscosity oil exhibiting complex rheological properties. Based on the laws of hydraulics for non-Newtonian fluids, the formulas for calculating head losses for fluids obeying Ostwald's law are proposed, their relationship to the classical equations of hydraulics is shown. The theoretical substantiation of looping installation for increasing the efficiency of pipeline transportation of high-viscosity oil taking into account the received dependences for power fluid is considered.
-
Date submitted2021-03-17
-
Date accepted2021-04-12
-
Date published2021-06-24
Application of the resonant energy separation effect at natural gas reduction points in order to improve the energy efficiency of the gas distribution system
- Authors:
- Andrei M. Schipachev
- Alena S. Dmitrieva
Maintaining the gas temperature and the formation of gas hydrates is one of the main problems in the operation of gas pipelines. Development and implementation of new effective methods for heating the gas during gas reduction will reduce the cost of gas transportation, solve the problem of resource and energy saving in the fuel industry. Study is aimed at increasing the energy efficiency of the natural gas reduction process by using a resonant gas heater to maintain the set temperature at the outlet of the gas distribution station (GDS) and prevent possible hydrate formation and icing of the station equipment. Paper considers the implementation of fireless heating of natural gas and fuel gas savings of heaters due to the introduction of a thermoacoustic reducer, operating on the basis of the Hartmann – Sprenger resonance effect, into the scheme of the reduction unit. By analyzing the existing methods of energy separation and numerical modeling, the effectiveness of the resonant-type energy separation device is substantiated. Modification of the reduction unit by introducing energy separating devices into it will allow general or partial heating of natural gas by its own pressure energy. Developed technology will allow partial (in the future, complete) replacement of heat energy generation at a gas distribution station by burning natural gas.
-
Date submitted2021-01-25
-
Date accepted2021-02-22
-
Date published2021-04-26
Conducting industrial explosions near gas pipelines
The problem to ensure the safety of objects which are in the area of blasting operations, ensuring the destruction of hard rocks, remains relevant. The article presents the results of a large-scale experiment to determine the safe conditions for conducting drilling and blasting operations near the active gas pipeline. The simplest and most reliable way to ensure the safety of the protected object from seismic impact is to reduce the intensity of the seismic wave, which is achieved by changing the parameters of drilling and blasting operations. This requires research to determine the impact of blasting operations on the parameters of seismic waves and the development of methods for measuring these parameters. The paper presents a detailed analysis of the seismic blast wave impact on the displacement of the ground and the model gas pipeline. The features of seismic monitoring during blasting operations near the active gas pipeline are shown. The seismic coefficients and attenuation coefficient of seismic waves are determined. It is proved that the readings of the seismic receivers on the surface and in the depth of the massive differ by two or more times.
-
Date submitted2019-07-17
-
Date accepted2019-10-09
-
Date published2020-04-24
Assessment of internal pressure effect, causing additional bending of the pipeline
Article justifies accounting for internal pressure effect in the pipeline, causing additional bending of the pipeline. According to some scientists, there is an erroneously used concept of the equivalent longitudinal axial force (ELAF) S x , which depends on working pressure, temperature stresses, and joint deformations of pipelines with various types of soils. However, authors of the article use ELAF S x concept at construction of mathematical model of stress-strain state (SSS) for complex section of the trunk pipeline, and also reveal it when analyzing the results of calculating the durability and stability of the pipeline. Analysis of SSS for calculated section of the pipeline was carried out for two statements of the problem for different values of operation parameters. In the first statement, effect of internal pressure causing bending of the pipeline is taken into account, and in the second it is neglected. It is shown that due to effect of ELAF S x at p 0 = 9.0 MPa, Dt = 29 °C extreme value of bend increases by 54 %, extreme values of bending stresses from span bending moment increase by 74 %, and extreme value of bending stresses from support bending moment double with regard to corresponding SSS characteristics of the pipeline. In case of neglecting the internal pressure effect causing additional bending of the pipeline (second statement of the problem), error in calculating the extreme value of bend is 35 %, extreme value of bending stresses from span bending moments is 44 %, and extreme value of bending stresses from support bending moments is 95 %.
-
Date submitted2019-03-18
-
Date accepted2019-04-26
-
Date published2019-08-23
Spatial Models Developed Using Laser Scanning at Gas Condensate Fields in the Northern Construction-Climatic Zone
Wide exploration and industrial exploitation of hydrocarbon fields in Yamal Peninsula pose in front of construction and mining companies critical problems of efficient construction at constantly evolving fields taking into account climatic and geocryological conditions of their location. Yamal Peninsula is characterized by unstable soils, the mobility of which has a substantial impact on the changes in spatial arrangement of field facilities, not only in the direct process of construction, but also during their scale-up and equipment overhaul. The paper examines implementation of 3D spatial arrangement modelling of industrial facilities into the process of construction and installation works at hydrocarbon fields in the northern construction-climatic zone. The purpose of implementing this method combined with 3D spatial modelling of equipment connections lies in reliability and safety enhancement of the facilities throughout their entire lifespan. Authors analyze statement and solution of the problem associated with alignment and installation of prefabricated equipment and pipelines, taking into account advanced technologies of 3D design and modelling. The study examines a 3D spatial model with the elements of equipment connection geometry; the model is related to existing production facilities at the field. Authors perform an analysis and in mathematical terms formulate the problem of optimal spatial arrangement for such models. The paper focuses on typical deviations, occurring in the installation process of constructions and connection facilities, their spatial arrangement is modelled. Possible solutions are offered, as well as an algorithm of their implementation at an operating field.
-
Date submitted2018-06-27
-
Date accepted2018-08-31
-
Date published2018-12-21
Numerical modeling of a stress-strain state of a gas pipeline with cold bending offsets according to in-line inspection
Knowledge of the current stress-strain state of any section of the pipeline allows you to make informed decisions on its operation, maintenance and repair, as well as on the prediction of the technical condition. The task of determining the characteristics of the stress-strain state of a gas pipeline section that has cold bend offsets (CBO) according to in-line inspection (ILI) is considered. The bent part of CBO is characterized by the presence of residual stresses and deformations in the wall of the offset, which contribute to the overall level of the stress-strain state of the gas pipeline operating under external and internal loads. Using the results of in-line diagnostics, numerical modeling and a solution, the change in the values of longitudinal stresses, is determined and the need to take into account residual stresses in the zone of elastic-plastic deformations of cold bend offsets is shown.
-
Date submitted2017-10-29
-
Date accepted2017-12-31
-
Date published2018-04-24
Risk assessment of accidents due to natural factors at the Pascuales – Cuenca multiple-use pipeline (Ecuador)
- Authors:
- Dzh. Zambrano
- S. V. Kovshov
- E. A. Lyubin
The natural aspects of the accident risk at the Pascuales – Cuenca multiple-use pipeline (Ecuador) are analysed in the paper. The Russian Methodological recommendations for the quantitative analysis of accident risks at hazardous production plants of oil trunk pipelines and oil product trunk pipelines issued in 2016 are used as a methodological framework due to relatively poorly defined evaluation mechanism for natural factors of accidents at oil trunk pipelines in the most widespread international accident risk assessment methodologies. The methodological recommendations were updated to meet the environmental conditions of oil pipelines of Latin America. It was found that the accidents due to natural factors make up approximately 15 % of cases at oil trunk pipelines in Ecuador. Natural geographical features of the areas surrounding the main Ecuadorian Pascuales–Cuenca oil trunk pipeline and its relatively short length allow defining three zones along the line in terms of the accident risk: lowland coastlines, high plateaus, and foothills. Calculations and analysis revealed that the maximum predicted specific frequency of accidents is characteristic of the lowland seaside area. The evidence showed that physical and chemical properties of soils and significant seismic activity are the root causes of failures.
-
Date submitted2015-10-23
-
Date accepted2015-12-19
-
Date published2016-08-22
Nondestructive techniques to control the quality and quantity of oil flows
- Authors:
- R. M. Proskuryakov
- A. V. Kopteva
The article considers the issue of improving the efficiency of exploiting the acting oil fields and transportation system on the basis of modern hi-tech technologies to control the extracted and transported material. Factors are studied that lower the reliability of oil flow measurements, both qualitatively and quantitatively, the main ambiguities are described of using current systems for metrological account of oil transported through the pipelines. The effect is studied of inclusions in the transported oil flow on measurement efficiency. A technique is suggested for selective measurements of separate phases in the complex multi-phase flows with isotropic radio emission, the principal relationships are presented to describe the intensity of direct and scattered gamma-radiation on flow parameters. Criteria are given for developing a measurement system that would control the actual component composition of the flow with time, hence the amount of oil transported; that would enable organizing a centralized open department to control the quality of oil and transportation conditions, upgrade the level of production and provide high measurement accuracy. Results are presented of testing the technique on an operating oil field; the relative error margin of measuring free gas content was 0.2 %. The range is reviewed of possible applications for the measurement system of multi-phase multi-component flows, developed in the Saint Petersburg Mining University.
-
Date submitted2015-08-24
-
Date accepted2015-10-10
-
Date published2016-04-22
The building a system of diagnosing the technical condition of the pipeline on the basis of continuous pulsed magnetic field
- Authors:
- R. M. Proskuryakov
- A. S. Dementev
Modern diagnostic systems do not always satisfy the requirements of the oil workers. At the moment, it is impossible to assess the overall technical condition of the pipeline without huge costs on operation diagnostic system. The article deals with the main problems of diagnostics of oil pipelines. The principle of operation of the pipeline system diagnostics using pulsed DC mag-netic field. This system allows you to assess the long section of the pipeline without interfering with the operation of the plant. A large network of pipelines can be controlled by separate sections that are connected to the console controller at a time. These sites can be branched. They must be connected by analogy with the four-pole. For information carrier assumes a constant magnetic field, the range of spread of the ferromagnetic conductor is not limited. The block diagram of the proposed diagnostic system with a brief description of each item is present in the article. The basic calculation power of the magnetic field. Show original signal, and the signal is converted because of the fault of the pipe walls: cracks, cavities, orifices. Walking through these places in the line, the magnetic field at the injury site experienced reflection, refraction, inter-ference, creating extra- that distorts the rectangular modulation constant magnetic field.
-
Date submitted2015-07-14
-
Date accepted2015-09-28
-
Date published2016-02-24
Selection of rational heating temperature for pipeline pumping high-viscosity and high pour point crude oil
- Authors:
- A. K. Nikolaev
- V. I. Klimko
The article deals with the transportation problems of high-viscosity and high pour point crude oil through pipelines. The possibility of a structural oil movement mode development during transportation below the pour point is analyzed. The results of the experiment for unevenness of the heat flux identification in the underground pipeline are given.
-
Date submitted2014-07-15
-
Date accepted2014-09-01
-
Date published2014-12-22
Mathematical modeling of the impact of blast waves on underground pipelines
- Authors:
- A. P. Gospodarikov
- G. A. Kolton
- E. L. Buldakov
Mathematical modeling of the impact of blast waves on the underground pipeline was composed from general equations of continuum mechanics, shell theory and hydraulics equations. The problem is formulated in the plane formulation for direct integration of the native system of equations chosen method of finite differences. At the contact of the array and the pipeline, boundary conditions of slippage and rigid clamping are considered.
-
Date submitted2010-07-15
-
Date accepted2010-09-13
-
Date published2011-03-21
Experimental setup for research Influence of vibromechanical treatment on mechanical properties of welded joints
- Authors:
- O. F. Khafizova
- V. I. Bolobov
The description of developed experimental setup for welding product that made of pipeline steels with application of applying vibration with intended frequency approximating to natural-vibration frequency of welded construction unit of pipelines during the welding cycle is presented.
-
Date submitted2010-07-07
-
Date accepted2010-09-06
-
Date published2011-03-21
Improvement of quality of dissimilar welded joints made of pipelines steels by application of vibromechanical treatment in welding
- Authors:
- O. F. Khafizova
The article describes opportunity of improvement of physical-mechanical properties of welded joint made of different strength grade pipeline steels (Steel 20 of K42 strength grade and 16ГС – K52) by applying vibration during the welding cycle. It’s shown that maximal positive effect is achieved by vibration frequency approximating to natural-vibration frequency of welded construction.
-
Date submitted2010-07-16
-
Date accepted2010-09-06
-
Date published2011-03-21
The aboveground oil pipeline temperature regimes calculation
- Authors:
- S. Yu. Trapeznikov
The theoretical and experimental investigations of the highviscosity oil transportation temperature regimes to improve the pipeline efficiency are caused by the insufficient knowledge of its heat transfer process. The dependencies for the hydraulic resistance coefficient and the dimensionless heat transfer coefficient of Nusselt are proposed.
-
Date submitted2010-07-16
-
Date accepted2010-09-11
-
Date published2011-03-21
Parameters of high viscosity oils transportation in the form of emulsion research in order to its optimization
- Authors:
- V. I. Aleksandrov
- A. P. Khrabrov
The article deals with the physical model of high viscosity oil-in-water emulsion flow, which concern both structural and plastic properties of viscoplastic liquids. On the basis of theoretical study, which was proved with experimental data, computation algorithm of high viscosity oil in emulsion state pipeline transportation was developed.
-
Date submitted2009-10-18
-
Date accepted2009-12-05
-
Date published2010-09-22
Assessment of the role of geodynamic factor in the accident rate of pipeline systems
- Authors:
- E. K. Melnikov
- A. N. Shabarov
The authors relate to the geodynamically active faults those faults with continuous up to present time low-amplitude movements which lead to the destructurization both of bedding rocks and of Quarternary deposits. The electrogeochemical processes proceeding in the zones of such faults, promote the metal corrosion that basically is the cause of increasing a few tens of times of specific accident rate at sites of active faults crossing with pipelines.
-
Date submitted2009-10-12
-
Date accepted2009-12-29
-
Date published2010-09-22
Types and mechanisms of geodynamic hazard in mineral deposits mining and exploitation of buried and surface engineer constructions
- Authors:
- A. N. Shabarov
It is shown that major emergencies in mineral deposits mining and in exploitation of buried and surface engineer constructions are attributed to active faults. Classification of hazardous zones has been developed. The mechanisms of influence of geodynamic hazard in coal mines and pipeline exploitation were determined. The technology of reduction of geodynamic risk was suggested.
-
Date submitted2009-08-15
-
Date accepted2009-10-19
-
Date published2010-02-01
Modern magnetic quality monitoring and the forecast of the technical condition of engineering constructions
- Authors:
- A. N. Lyubchik
On terrain of Russia act a system of mains by a general expansion more than 200 thousand km. More than halves oil and gas pipelines are in exploitation 25-35 years, i.e. demand immediate repeated examination and conforming preventive maintenance. Intraube magnetic or the ultrasonic flaw detection for these purposes is not always possible and is dear enough, therefore last years a urgency of application of remote geophysical methods has increased at service oil and gaspipeline of the transport sharply. These methods are express enough and more economic.