Submit an Article
Become a reviewer

Search articles for by keywords:
энергоемкость бурения

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-10
  • Date accepted
    2024-12-27
  • Date published
    2024-04-25

Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure

Article preview

The selection of efficient drilling and blasting technology to achieve the required particle size distribution of blasted rock mass and reduce ore dilution is directly related to the accurate definition of rock mass properties. The zoning of the rock massif by its hardness, drillability and blastability does not consider the variability of the geological structure of the block for blasting, resulting in an overestimated specific consumption of explosives. The decision of this task is particularly urgent for enterprises developing deposits with a high degree of variability of geological structure, for example, at alluvial deposits. Explosives overconsumption causes non-optimal granulometric composition of the blasted rock mass for the given conditions and mining technology. It is required to define physical and mechanical properties of rocks at deposits with complex geological structure at each block prepared for blasting. The correlation between the physical and mechanical properties of these rocks and drilling parameters should be used for calculation. The relation determined by the developed method was verified in industrial conditions, and the granulometric composition of the blasted rock mass was measured by an indirect method based on excavator productivity. The results demonstrated an increase in excavation productivity, thus indicating the accuracy of given approach to the task of identifying the rocks of the blasted block.

How to cite: Vinogradov Y.I., Khokhlov S.V., Zigangirov R.R., Miftakhov A.A., Suvorov Y.I. Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure // Journal of Mining Institute. 2024. Vol. 266 . p. 231-245. EDN RUUFNM
Energy industry
  • Date submitted
    2022-10-13
  • Date accepted
    2022-12-13
  • Date published
    2023-07-19

A complex model of a drilling rig rotor with adjustable electric drive

Article preview

A modified mathematical model of an asynchronous electric drive of the rotor – a drill string – a bit – a rock is considered and implemented, which develops and generalizes the results of previously performed studies. The model includes the following subsystems: a model of an asynchronous drive with vector control; a model of formation of the resistance moment at the bottom of the bit, taking into account the peculiarities of the interaction between the bit and the rock; a model of a multi-mass mechanical part that takes into account the deformation of the drill string; subsystem for the drilling rig energy-technological parameters formation. The integrated model makes it possible to calculate and evaluate the selected drilling modes, taking into account their electro-mechanical, energy and technological efficiency and the dynamics of drilling processes. The performed computer simulation of drilling modes confirmed the possibility of a stick-slip effect accompanied by high-frequency vibrations during bit stops, which may change the direction of rotation of the bit, its accelerated wear and unscrewing of the drilling tool. Long bit stops lead to a significant decrease in the average bit rotation speed, which can explain the decrease in the ROP and increase in energy consumption when drilling in the zone of unstable bit rotation. The model can be used as a base for further improvement of rotary drilling control systems.

How to cite: Ershov M.S., Komkov А.N., Feoktistov E.A. A complex model of a drilling rig rotor with adjustable electric drive // Journal of Mining Institute. 2023. Vol. 261 . p. 339-348. DOI: 10.31897/PMI.2023.20
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-06-09
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields

Article preview

Scientific and technological progress over the last century has led to an enormous increase in the consumption of minerals, including energy resources. Most of the exploited oil and gas fields are already considerably depleted, so it is necessary to search for new hydrocarbon resources, particularly at great depths. Deep drilling plays a special role in solving this problem. The article considers the world and Russian experience of ultra-deep wells drilling. The methods and technologies used in the construction of wells, as well as complications and accidents occurring during their drilling were analyzed. The analysis revealed that the existing limitations for drilling parameters of deep and ultra-deep wells are caused by the technical characteristics of surface and bottomhole drilling equipment, which do not meet the extreme drilling conditions. The directions for development of deep and ultra-deep well drilling machinery and technologies are suggested. The notion of extreme rock and geological drilling conditions is introduced, which describes drilling in conditions of hydrostatic pressure of flushing fluid column and high bottomhole temperature both at stable and unstable wellbore conditions, coming close to the upper limit of operating technical characteristics of bottomhole assembly, the drill string and flushing fluid.

How to cite: Dvoynikov M.V., Sidorkin D.I., Yurtaev S.L., Grokhotov E.I., Ulyanov D.S. Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields // Journal of Mining Institute. 2022. Vol. 258 . p. 945-955. DOI: 10.31897/PMI.2022.55
Oil and gas
  • Date submitted
    2021-09-22
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Possibilities for creating Russian high-tech bottomhole assembly

Article preview

Development of high-tech well electronic measuring systems is aimed at creating modern equipment: telemetry, well geophysical measurement equipment, the architecture of which is divided into basic (with measurement channels for gamma logging and inductive resistance) and advanced (with radioactive, acoustic, magnetic resonance and thermobarometric measurement channels, including azimuthal methods of investigation). Over-the-bit measurement modules, rotary steerable systems are being developed and channels for transmitting data to the surface are being improved. Vice versa, specialized surface equipment with highly integrated software is being created. Different measurement modules are manufactured by different companies, which creates uncertainties in the possibility of interfacing the manufacturers' measurement modules into a single well measurement system. The article presents an analysis of the readiness of Russian oil service companies to produce well and surface equipment for drilling Russian directional oil and gas wells, meeting modern requirements for accuracy, lifetime and operating conditions. The possibility of creating a fully Russian well high-tech equipment and the required resources, risks and measures to mitigate them when creating a modern well measurement system are considered.

How to cite: Zhdaneev O.V., Zaytsev А.V., Prodan Т.T. Possibilities for creating Russian high-tech bottomhole assembly // Journal of Mining Institute. 2021. Vol. 252 . p. 872-884. DOI: 10.31897/PMI.2021.6.9
Mining
  • Date submitted
    2020-06-09
  • Date accepted
    2020-11-02
  • Date published
    2020-11-24

Method of drilling process control and experimental studies of resistance forces during bits drilling with PDC cutters

Article preview

A rational, theoretically proved and empirically verified control system is a condition for optimal management of the drilling process in compliance with the criteria for minimizing the cost of time and material resources. A new generation of rock-cutting tools using PDC cutters (polycrystalline diamante cutters), which are extremely ef fective when drilling wells for various purposes in medium-hard rocks, dictates the need to develop methods and criteria for optimal control of the drilling process using this tool. The paper presents an analysis of the force interaction between rock-cutting elements, face rock, and drilling mud sa turated with slam, highlights the influencing factors and provides dependencies for determining the parameters of rock failure. Empirical verification of the theoretical propositions was carried out based on the data analysis from experimental bit drilling of marble with PDC cutters with a diameter of 76.2 mm, processed using the method of full factor experiment to obtain mathematical models of factors and their graphical interpretation. The method of controlling the drilling process based on the optimal ratio of the tool rotation frequency, axial weight and deepening per one turnover is considered, which allows determining the rock failure mode at the well bottom by indirect signs and choose the optimal values of the drilling mode parameters that correspond to the most optimal conditions in terms of achieving the maximum mechanical drilling speed in conjunction with the rational mode of rock-cutting tool operation. A scheme is presented that contains possible variants of the bit run mode and ways to recognize them by the ratio of the deepening per turnover and the rotation frequency of the rock-cutting tool.

How to cite: Neskromnykh V.V., Popova M.S., Golovchenko A.E., PETENEV P.G., Baochang L. Method of drilling process control and experimental studies of resistance forces during bits drilling with PDC cutters // Journal of Mining Institute. 2020. Vol. 245 . p. 539-546. DOI: 10.31897/PMI.2020.5.5
Oil and gas
  • Date submitted
    2019-06-28
  • Date accepted
    2019-09-03
  • Date published
    2019-12-24

Development of a drilling process control technique based on a comprehensive analysis of the criteria

Article preview

Compliance with drilling operations requirements is achieved by introducing advanced approaches to the management of the drilling process. Main requirement is to reduce the time and material costs for construction of the well. Increase in drilling speed is provided by rational selection of rock cutting tools and modes of its use. Development of a new generation of rock cutting tools is a complex process and requires systematic, integrated approach. In order for high costs of developing and manufacturing the tool to pay off without significantly increasing the cost of drilling, considerable attention should be paid to scientifically justified methods for its running. At well drilling using bottomhole telemetry systems with full computer support for the drilling process, there is a reasonable possibility of using a control technique based on objective results of the drilling process coming directly from the bottomhole of the well in real time. Use of a full factorial experiment is justified for processing data that affect drilling performance. Aim of the research is to develop a drilling process management technique based on a comprehensive analysis of criteria online. Objects of research: rock destruction mechanism during drilling; parameters affecting the process of well drilling; optimization of well drilling processes. The research used the following: experimental drilling with a diamond tool at the bench, method of a full factorial experiment, analytical studies. Article highlights the factors affecting the performance of a diamond rock cutting tool in the process of drilling a well, notes main criteria affecting the efficiency of the drilling process. It also describes mechanism of volumetric destruction, defines the conditions for the destruction of rock at various drilling modes and the dependence of the change in deepening per round on the parameters of the drilling modes. Technique of controlling the parameters of the drilling mode is considered, which allows determining indirectly the mode of rock destruction at the bottomhole of the well and choosing optimal values of the parameters for the drilling mode that correspond to the most favorable conditions.

How to cite: Neskoromnykh V.V., Popova M.S. Development of a drilling process control technique based on a comprehensive analysis of the criteria // Journal of Mining Institute. 2019. Vol. 240 . p. 701-710. DOI: 10.31897/PMI.2019.6.701
Oil and gas
  • Date submitted
    2019-03-21
  • Date accepted
    2019-05-05
  • Date published
    2019-08-23

Stimulation of the Drilling Process with the Top Driven Screw Downhole Motor

Article preview

Paper considers application of the top driven screw downhole motor during drilling of directional wells. The advantages and disadvantages of the rotation-sliding technology with implementation of top drive together with screw downhole motor are shown. It has been proven that the use of a screw downhole motor with simultaneous rotation of drilling pipes using the drilling rig's top drive allows increasing the bit rotation frequency without additional loading of the drilling string. Field data for the work out of one-type PDC bits in identical geological and technical conditions with different types of drives during the construction of three directed wells at the Rumaila oil field of the Republic of Iraq were obtained. A regular increase in the mechanical penetration rate, which is explained by an increase in the bit rotation frequency, has been proved. According to the data obtained, a comparative analysis of the drilling indices was carried out, as a result of which the feasibility of joint use of top power drive with screw downhole motor at drilling oil and gas wells was proved.

How to cite: Simonyants S.L., Al Taee M. Stimulation of the Drilling Process with the Top Driven Screw Downhole Motor // Journal of Mining Institute. 2019. Vol. 238 . p. 438-442. DOI: 10.31897/PMI.2019.4.438
Electromechanics and mechanical engineering
  • Date submitted
    2018-01-02
  • Date accepted
    2018-03-14
  • Date published
    2018-06-22

Analysis of the options of modernization of roller-bit drilling machines with a submersible steamer

Article preview

The designs of submersible hammers and dampers protected by patents for reducing the vibration of the drilling rig of roller drill machines are proposed. The variants of modernizing drilling rigs for drilling hard rocks and faces of complex structures are considered. Particular attention is paid to the joint work of submersible shockers and pneumatic shock absorbers, the preferred schemes for the arrangement of these devices by drilling rigs are indicated. The results of experimental tests of machines with pneumatic hammers are presented to determine the vibration performance and drilling speeds. The pneumatic hammer allows increasing the speed of drilling process to the intensification of the destruction of the plain face by the shock load and the cleavage of the protrusions of the unevenness of the face, the better fitting of the bit to the face and the release of the blades or the bit pins from the drill bit. The choice of a particular type of damper or shock absorber depends on its design scheme and the possibility of changing the design of the drill string. With the complexity of installing a damping device in the mast (with significant dimensions of shock absorbers and drilling of strong heterogeneous rocks), it is advisable to use a set of tools to reduce hydraulic pulsations in the mains and cylinders of the hydraulic system by installing chokes in the oil plants and pneumatic shock absorbers. It is proposed to use the device for the development of pneumatic hammers by a patent-pending drilling method with a hollow piston filled with magnetically active heavy liquid, which will allow controlling the frequency and size of the shock pulses and partially compensating for the drill string fluctuations arising from the uneven immersion of the bit in the array . It is noted that the proposed solutions increase the drilling speed by an average of 15%.

How to cite: Yungmeister D.A., Krupenskii I., Lavrenko S.A. Analysis of the options of modernization of roller-bit drilling machines with a submersible steamer // Journal of Mining Institute. 2018. Vol. 231 . p. 321-325. DOI: 10.25515/PMI.2018.3.321
Electromechanics and mechanical engineering
  • Date submitted
    2015-08-25
  • Date accepted
    2015-10-01
  • Date published
    2016-04-22

Vibrodiagnostics of the technical state slurry pumps

Article preview

Analysis of the work hydrotransport systems in processing plants shows that the efficiency of this type transport does not match its technical capabilities: the high laboriousness involved in the operation of the equipment, high hydroabrasive wear of slurry pumps and pipelines, low working life pumps, high metal consumption and energy. The main reason for the lack of effectiveness of hydraulic transport is hydroabrasive wear impellers of slurry pumps, causing rising levels of vibra-tion pumps, reducing the pressure characteristics, general technical state of hydrotransport system and as a result - low pumps life, not exceeding 500 hours of continuous operation. In paper, it is shown that as a criterion of period normal operation slurry pump can be used coefficient of techni-cal state, the value of which is proportional to the relative head, degree of hydroabrasive wear of the impeller and time of continuous operating. The coefficient technical state of slurry pump can be represented as a function of current flow rate and the RMS value of vibration velocity. The re-sults of theoretical and experimental studies used to develop algorithms and techniques express-diagnosis and monitoring of slurry pumps in hydrotransport system, data which indicate the need for routine maintenance of pumping equipment.

How to cite: Aleksandrov V.I., Sobota I. Vibrodiagnostics of the technical state slurry pumps // Journal of Mining Institute. 2016. Vol. 218 . p. 242-250.
Geology
  • Date submitted
    2015-08-17
  • Date accepted
    2015-10-12
  • Date published
    2016-04-22

Isolation of promising areas to drill for unconventional hydrocarbons petrikovskih sediments Davydovskogo deposit Pripyat Trough

Article preview

Pripyat Trough is the only oil basin in the territory of the Republic of Belarus. Mining is carried out within the basin for 50 years. During this time, the proportion of active stocks decreased significantly, while the share of hard-to-inventories increased. Therefore, due to the depletion of traditional reserves, urgent problem arises in the study and production of unconventional hydrocarbon traps. To this type of traps are Petrikov deposits Davydov field. These deposits have low permeability and capacitive properties, but at the same time in a number of wells in the test sediment in Colon yielded commercial oil inflows. Some of the well in a certain period of development led oil from Petrikov deposits. In similar deposits Rechitsa field yielded commercial oil inflows in drilling horizontal wells with hydraulic fracturing. Until recently, the reservoir Petrikov deposits was listed among the off-balance sheet reserves after drilling – reserves transferred to the balance of C1. Therefore, the input to the development of stranded there is a need to identify the most promising area for drilling horizontal wells, followed by hydraulic fracturing. To perform this work was carried out pointwise interpretation of GIS for all wells Davydov field, the results of which built the geological and petrophysical model of the deposit. Also, the analysis of core samples, the results of drilling. Produced dismemberment Petrikov deposits on two subhorizon on the results of the interpretation of GIS and well logs. The outcome of the work performed is a recommended site for drilling.

How to cite: Shevelev E. Isolation of promising areas to drill for unconventional hydrocarbons petrikovskih sediments Davydovskogo deposit Pripyat Trough // Journal of Mining Institute. 2016. Vol. 218 . p. 191-197.
Mining
  • Date submitted
    2014-09-25
  • Date accepted
    2014-11-20
  • Date published
    2015-06-26

Power consumption of hydraulic transport of products of mineral processing

Article preview

The problem of decreasing power consumption by hydraulic transport systems remains to be the most important among other problems in the mining industry. The increase of solid material concentration in the volume of transported pulp leads to reduction of general pulp flow rate on the one hand and to increase of pressure losses and, accordingly, of a necessary head for over-coming hydraulic resistance on the other hand. The problem of minimizing power consumption in slurry transport is of particular relevance now when there is a tendency for hydraulic transport of highly-concentrated pulps and pastes to be widely used in the mining industry. The article shows that the energy intensity to a certain extent depends on the performance of hydraulic transport of solid materials, and this dependence is of extreme nature. At low concentra-tions of solid particles large volumes of recycled water have to be pumped to provide the neces-sary performance, which leads to consumption of large amounts of electricity. The increase оf concentration results in the decrease in the volumetric flow rate of the pulp and, accordingly, spe-cific power consumption of the process. The process of reducing energy consumption takes place up to a certain critical value of the concentration above which a further increase in the concentra-tion raises power consumption.

How to cite: Aleksandrov V.I., Sobota I. Power consumption of hydraulic transport of products of mineral processing // Journal of Mining Institute. 2015. Vol. 213 . p. 9-16.
Mining machine, electrical engineering and electromechanics
  • Date submitted
    2010-07-01
  • Date accepted
    2010-09-23
  • Date published
    2011-03-21

Improving the efficiency of system of deleting waste on Udachny GOK

Article preview

Examined ways to improve the efficiency of hydrotransport systems. A method for determining the most advantageous modes of GTP. The calculation of basic characteristics of the flow of pulp when the grain size, density and quantity released to the enrichment of solid material to installation hydrotransport concentrator.

How to cite: Dokukin V.P., Velnikovskiy A.A. Improving the efficiency of system of deleting waste on Udachny GOK // Journal of Mining Institute. 2011. Vol. 189 . p. 83-86.
Development of solid mineral deposits
  • Date submitted
    2010-07-06
  • Date accepted
    2010-09-06
  • Date published
    2011-03-21

Distribution of products of destruction of granite files

Article preview

The article considers the problem of size distribution of grain-size composition of the blasted rock mass, rock fragments blasted rock mass and rock blockiness. The logarithmic-normal distribution law is laid down for all blasted granite mass products. It was proved, that logarithmic variance of logarithmic normal distribution law of the fractured rock mass fragments’ distribution is a structural invariant on the level of statistical universe of the block and fragments.

How to cite: Paramonov G.P., Vinogradov Y.I., Kamenskiy A.A. Distribution of products of destruction of granite files // Journal of Mining Institute. 2011. Vol. 189 . p. 146-150.
Development of oil and gas deposits
  • Date submitted
    2010-07-18
  • Date accepted
    2010-09-20
  • Date published
    2011-03-21

Analyses of technologcal characteristics of diamond drilling of hard rock

Article preview

The classification of different diamond bit types for drilling of jointed rock is offered. It is based on two predominant types of wear: mechanical and thermo physical. The facial and lateral on matrix body as well as cracks along the matrix body, spalling of the matrix sectors and normal wear are attributed to the mechanical type of wear. The proposed classification includes main types of wear at jointed rocks drilling and creates the grounds for the designing of rock-distributing tool more resistant to mechanical and thermo physical wear.

How to cite: Gorelikov V.G., Vu V.D. Analyses of technologcal characteristics of diamond drilling of hard rock // Journal of Mining Institute. 2011. Vol. 189 . p. 179-181.