Vibrodiagnostics of the technical state slurry pumps
- 1 — Saint-Petersburg Mining University
- 2 — University of Environmental and Life Sciences
Abstract
Analysis of the work hydrotransport systems in processing plants shows that the efficiency of this type transport does not match its technical capabilities: the high laboriousness involved in the operation of the equipment, high hydroabrasive wear of slurry pumps and pipelines, low working life pumps, high metal consumption and energy. The main reason for the lack of effectiveness of hydraulic transport is hydroabrasive wear impellers of slurry pumps, causing rising levels of vibra-tion pumps, reducing the pressure characteristics, general technical state of hydrotransport system and as a result - low pumps life, not exceeding 500 hours of continuous operation. In paper, it is shown that as a criterion of period normal operation slurry pump can be used coefficient of techni-cal state, the value of which is proportional to the relative head, degree of hydroabrasive wear of the impeller and time of continuous operating. The coefficient technical state of slurry pump can be represented as a function of current flow rate and the RMS value of vibration velocity. The re-sults of theoretical and experimental studies used to develop algorithms and techniques express-diagnosis and monitoring of slurry pumps in hydrotransport system, data which indicate the need for routine maintenance of pumping equipment.
References
- Александров В.И. Коэффициент технического состояния грунтового насоса / В.И.Александров, С.С.Меньшиков // Естественные и технические науки. 2014. № 4. С.66-71.
- Волошин Н.Н. Надежность технологических установок на обогатительных предприятиях / Н.Н.Волошин, В.И.Гашиев. M.: Недра, 1974. 136 с.
- Смолдырев А.Е. Трубопроводный транспорт. M.: Недра, 1980. 293 c.
- Техническая диагностика гидравлических приводов / Т.В.Алексеева, В.Д.Бабанская, Т.М.Башта и др. M.: Машиностроение, 1989. 264 с.
- Турчанинов С.П. Гидроабразивный износ металлов при кавитации. M.: Машиностроение, 1971. 240 с.
- Dube N.B., Hutchings I.M. Influence of particle fracture in the high-stress and low-stress abrasive wear of steel // Wear. 1999. Vol.233-235. P.246-256.
- Bazovsky I. Reliability theory and practice. New York: Dover Publications Inc, 1961. 377 p.
- Sandler G.H. Reliability systems engineering. Englewood Cliffs. New Jork: Prentice-Hall, 1963. 300 p.
- Suchanek J, Smrkovsky P, Blaskovic N.A. Erosive and hydroabrasive resistance in hardfacing materials // Wear. 1999. Vol.233-235. P.229-236.
- Sherington I, Hayhurst P. Simultaneous observations of the evolution of debris density and friction coefficient in dry sliding steel contacts / Proceedings of the 9th Nordic Symposium on Tribology. 2001. Vol.249. Is.3-4. P.182-187.
- Karimi A, Verdon C, Barbezat G. Microstructure and hydroabrasive wear behavior of high-velocity oxy-fuel ther-mally sprayed Wc-Co (Cr) coatings // Surface and Coating Technology. 1993. Vol.57(1). P.81-89.
- Yao M, Page N.W. Friction measurements on Ni-Hand 4 during high pressure crushing of silica // Wear. 2001. Vol.249. P.117-126.