Submit an Article
Become a reviewer
Vol 218
Pages:
289-295
Download volume:
RUS
Research article
Geo-nanomaterials

Multicriteria estimation of bearing capacity of geomaterials

Authors:
I. A. Brigadnov
About authors
  • Ph.D., Dr.Sci. professor Saint-Petersburg Mining University
Date submitted:
2015-08-13
Date accepted:
2015-10-29
Date published:
2016-04-22

Abstract

In the article the problem of an estimation of bearing capacity of geomaterials as a deform-able solid is considered in the current configuration, which may be as the reference (undeformed) or the actual (deformed). We propose an original variational approach to the problem for stresses in selected subdomains, in which, depending on different engineering considerations, average in-tegral values of different component of stresses are estimated and from their aggregate the bearing capacity of the current configuration of the solid is estimated regarding to given external influ-ences. In each of the selected subdomain the weakest stress field is obtained which is globally bal-anced with external influences. For example, the assessment of the average integral hydrostatic pressure is needed for study of bearing capacity of geomaterials.

Keywords:
geomaterial deformable solid bearing capacity variational problem for stresses stress concentrators multicriteria estimation
Бригаднов И.А. Многокритериальная оценка несущей способности геоматериалов // Записки Горного института. 2016. Т. 218 . С. 289-295.
Brigadnov I.A. Multicriteria estimation of bearing capacity of geomaterials // Journal of Mining Institute. 2016. Vol. 218 . p. 289-295.
Go to volume 218

References

  1. Борщ-Компониец В.И. Практическая механика горных пород. М.: Недра, 2013. 322 с.
  2. Бригаднов И.А. Оценка несущей способности нелинейно упругих тел // Изв. РАН. МТТ. 2001. № 1. С.6-15.
  3. Бригаднов И.А. Двойственный подход к оценке несущей способности нелинейно упругих тел // Изв. РАН. МТТ. 2004. № 2. С.39-46.
  4. Клюшников В.Д. Математическая теория пластичности. М.: Изд-во МГУ, 1979. 208 с.
  5. Куфнер А. Нелинейные дифференциальные уравнения / А.Куфнер, С.Фучик. М.: Наука, 1988. 304 с.
  6. Лурье А.И. Нелинейная теория упругости. М.: Наука, 1980. 512 с.
  7. Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра, 1996. 447 с.
  8. Пальмов В.А. Элементы тензорной алгебры и тензорного анализа. СПб.: Изд-во Политехн. ун-та, 2008. 109 с.
  9. Поздеев А.А. Большие упруго-пластические деформации / А.А.Поздеев, П.В.Трусов, Ю.И.Няшин. М.: Наука, 1986. 232 с.
  10. Сьярле Ф. Математическая теория упругости. М.: Мир, 1992. 472 с.
  11. Экланд И. Выпуклый анализ и вариационные задачи / И.Экланд, Р.Темам. М.: Мир, 1979. 400 с.
  12. Brigadnov I.A. Duality method in limit analysis problem of non-linear elasticity // Computer Assisted Mech. Eng. Sci. 2003. Vol.10. P.375-380.
  13. Brigadnov I.A. Limit analysis method in elastostatics and electrostatics // Math. Meth. Appl. Sci. 2005. Vol.28. P.253-273.

Similar articles

History and philosophy of science in technical and mining-geological education in modern Russia
2016 M. I. Mikeshin
Vibrodiagnostics of the technical state slurry pumps
2016 V. I. Aleksandrov, Irzhi Sobota
Results of the 5G borehole drilling at russian antarctic station «Vostok» and researches of ice cores
2016 N. I. Vasilev, A. N. Dmitriev, V. Ya. Lipenkov
Ecological aspects of vehicle tunnels ventilation in the conditions of megalopolises
2016 S. G. Gendler
Isolation of promising areas to drill for unconventional hydrocarbons petrikovskih sediments Davydovskogo deposit Pripyat Trough
2016 E.I. Shevelev
Technical and technological solutions to ensure stability of downhole drilling motors
2016 M. V. Dvoinikov, Yu. D. Muraev