-
Date submitted2024-05-06
-
Date accepted2024-06-14
-
Date published2024-07-04
Natural carbon matrices based on brown coal, humic acids and humine extracted from it for purification of aqueous solutions from low molecular weight organic impurities
Heterogeneous systems including natural carbon matrices in the solid phase and aqueous solutions of low molecular weight organic compounds with positive and negative variations from ideality in the liquid phase are considered. The technical characterization of the considered supramolecular ensembles on the basis of brown coal of the Kara-Keche deposit (Kyrgyzstan), humic acids and humine extracted from it is given. Functional analysis of the samples was carried out using FTIR spectroscopy. The morphology of the surface of the considered carbon matrices has been investigated, in different points of which the local microelement composition has been established. An X-ray phase analysis of Kara-Keche brown coal and humic acids and humine extracted from it was carried out. The isothermal adsorption of bipolar molecules of glycine and urea, neutral D-glucose from aqueous solutions on solid carbon sorbents has been studied. An assumption has been made about the adsorption of low molecular weight organic compounds from aqueous solutions on humine and Kara-Keche coal in irregularities and pores of the carbon matrix of sorbents, for humic acids – on surface reaction centers. Due to its developed pore structure and resistance to acids and alkalis, humine from Kara-Keche coal is recommended for the purification of industrial wastewater from low molecular weight organic ecotoxicants.
-
Date submitted2022-10-31
-
Date accepted2023-04-21
-
Date published2024-02-29
Study of the properties and action of polyelectrolytes in the treatment of the dressing plant’s discharges
The organization of intrafactory water circulation at mining and processing enterprises, when production wastes and discharges are not sent to an external tailings dump, is an urgent environmental and economic task. Returning even a part of water into the technological process after preliminary treatment will significantly reduce the volume of polluted water discharged into tailings, which will reduce energy costs for waste transportation and the negative environmental impact. One of the wastes sent to the tailings during the ore dressing wastes from the Kovdor deposit to the tailings dump is the discharge of thickeners for the preparation of apatite flotation feed. In order to choose the effective discharge cleaning regime, the authors have evaluated the action of polyacrylamide flocculants. It has been discovered that the apatite and calcite particles interact more effectively with the anionic flocculant. This fact determines its advantage for the treatment of suspended particles. The influence of the residual concentration of a flocculant on the apatite flotation, where a part of the returned treated water goes, has been assessed. Compared to flotation with recycled water, there is a decrease of P2O5 extraction into apatite concentrate of equal quality. In order to obtain the required enrichment indicators on the treated water, it is necessary to adjust the collector (tall oil fatty acids) and depressor (liquid glass) costs.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-11-03
In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions
In-situ leaching of molybdenum and uranium is becoming an increasingly common process. The features of the material composition of ores, leading to a decrease in their filtration properties, were considered. Activation leaching with leaching solutions that have undergone electrophotochemical activation before contact with the ore mass were studied. Activation preparation of leaching solutions promotes the synthesis of clustered water molecules with collectivized protons and hydroxyl ions, as well as active forms of oxygen and hydrogen. Cell leaching of molybdenum from mature tailings of the Shakhtaminsk deposit was studied experimentally. After pre-oxidation with an active carbonate solution, a model borehole leaching was carried out with a chloride-hypochlorite solution. Molybdenum extraction on resin a was 85 % in 30 days. Experiments on the percolation leaching of uranium from the ores of the Uchkuduk and Sugraly deposits confirmed the potential possibility of a significant increase in the extraction of uranium by electrophotoactivated percarbonate solutions relative to aqueous solutions of sodium and ammonium carbonate. When leaching with carbonate solutions without an additional oxidizing agent, the extraction of uranium from the Sugraly deposit ore sample was 52 and 59 % (sodium carbonate and ammonium carbonate). The use of hydrogen peroxide as an oxidizing agent made it possible to achieve 87-88 % extraction into pregnant solutions in 21 days without pre-oxidation. The performed studies confirm the processing capability of extracting uranium and molybdenum by percolation leaching in columns and borehole leaching.
-
Date submitted2022-04-13
-
Date accepted2022-05-25
-
Date published2022-11-03
Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit
The growing demand for ferrous metallurgy products necessitates the introduction of technologies that increase the efficiency of the processing of iron-bearing raw materials. A promising trend in this area is the implementation of solutions based on the possibility of selective disintegration of ores. The purpose of this work was to establish the laws of selective disintegration of ferruginous quartzites based on the results of the study of mineralogical and technological properties of raw materials. We present data on the study of mineralogical and technological features of ferruginous quartzites of the Mikhailovskoye deposit. The data were obtained using X-ray fluorescence analysis and automated mineralogical analysis. Based on studies of the nature of dissemination and the size of grains of rock-forming and ore minerals, the tasks of ore preparation are formulated. The parameters for the iron and silicon oxide distribution by grain-size classes in the grinding products were established during the study. Based on empirical dependences, the grain size of grinding was predicted, at which the most effective release of intergrowths of ore minerals and their minimum transition to the size class of –44 µm should be achieved.
-
Date submitted2021-03-31
-
Date accepted2022-04-26
-
Date published2022-11-03
Features of obtaining metallurgical products in the solid-state hydride synthesis conditions
- Authors:
- Andrey G. Syrkov
- Lyudmila A. Yachmenova
A scientific substantiation of solid-phase feedstock choice and preparation has been carried out, and the thermodynamic and kinetic aspects of solid-state hydride synthesis (SHS) of metal products have been analyzed using the nickel dichloride reduction as an example. The preliminary dehydration modes and methods for controlling the complete removal of crystalline water from chloride raw materials and Olenegorsk superconcentrate, which is natural oxide raw material, are described. Conditions, including initial solid chloride particle sizes, are established under which diffusion complications of reduction to metal in methyldichlorosilane vapor are minimized. Thermodynamic estimates of nickel chlorides and oxides reduction possibility, iron and copper with ammonia and methane at temperatures of 400-1000 K in equilibrium conditions have been carried out. It has been shown that the stoichiometric coefficients of the nickel dichloride in ammonia overall reduction reaction calculated by thermodynamic modeling are in agreement with experimental data. In contrast to the copper dichloride reduction, for nickel dichloride the formation of metal monochloride at the intermediate stage is uncharacteristic, which is associated with a higher thermal stability of nickel dichloride. The main kinetic regularities of the reduction of nickel, copper, and iron to metal under SHS conditions in ammonia, monosilane, and methane, as well as the nickel dichloride with methyldichlorosilane vapor and methane successive reduction, are considered. Approximation of experimental data by topochemical equations in a linear form showed that for reduction degrees a up to 0.7-0.8, these data are satisfactorily described by the Roginsky – Schultz equation. For a > 0,8 the “shrinking sphere” model works better, which confirms the localization of the solid-state reduction reaction at the interface, moves deep into the crystal with the formation of a of interlocked metal germs. The importance and prospects of the results obtained for the theory development of metallurgical processes, deep complex processing of natural iron oxide raw materials, metal products and new generation materials production, including superhydrophobic ones, are discussed. The relevance of the study from the point of view of applying the method of physical and chemical analysis to the study of complex heterogeneous metallurgical processes is noted.
-
Date submitted2021-06-22
-
Date accepted2021-11-30
-
Date published2021-12-27
Increasing the efficiency of rare earth metal recovery from technological solutions during processing of apatite raw materials
The issues of complex processing of mineral resources are relevant due to the depletion of available raw materials. So, it is necessary to involve technological waste, generated during the processing of raw materials, to obtain valuable components. In the process flow of apatite concentrate treatment using the sulfuric acid method, a large amount of phosphogypsum is produced with an average content of light rare earth metals (REMs) reaching 0.032-0.45 %. When phosphogypsum is treated with sulfuric acid solutions, a part of REMs is transferred to the sulfate solution, from which it can be extracted by means of ion exchange method. The study focuses on sorption recovery of light REMs (praseodymium, neodymium and samarium) in the form of anionic sulfate complexes of the composition [ln(SO 4 ) 2 ] – on polystyrene anion exchanger AN-31. The experiments were performed under static conditions at a liquid-to-solid ratio of 1:1, pH value of 2, temperature of 298 K and initial REM concentration in the solutions ranging from 0.83 to 226.31 mmol/kg. Thermodynamic description of sorption isotherms was carried out by the method based on linearization of the mass action equation, modified for the ion exchange reaction. As a result of performed calculations, the authors obtained the constants of ion exchange equilibrium for Pr, Nd and Sm, as well as the values of the change in the Gibbs energy for the ion exchange of REM sulfate complexes on the AN-31 anion exchanger and the values of total capacity of the anion exchanger. Calculated separation factors indicated low selectivity of AN-31 anionite exchanger for light REMs; however, the anion exchanger is suitable for effective recovery of a sum of light REMs. Based on the average value of ion exchange equilibrium constant for light REMs, parameters of a sorption unit with a fluidized bed of anion exchanger were estimated.
-
Date submitted2020-06-29
-
Date accepted2021-05-21
-
Date published2021-09-20
Transformation of grains of technological raw materials in the process of obtaining fine powders
Crushing and grinding of materials are the most common processes of sample preparation for subsequent analysis and industrial application. Recently, grinding has become one of the most popular methods for producing nano-sized powders. This study investigates certain features of grain transformation in the process of grinding ores with finely dispersed valuable components in order to liberate them, as well as specifics of grinding metallurgical raw materials, metals and their mixtures for using them as initial components in metallurgical and other technological processes. We identified and examined structural and morphological changes of various powders after ultrafine grinding using the methods of scanning electron microscopy and X-ray microanalysis. It was proved that in order to take into account sample preparation artifacts during analytic studies of solid samples and development of technological processes, fine grinding of heterogeneous materials, especially if they contain metals, requires monitoring of the ground product by methods of scanning electron microscopy and X-ray microanalysis.
-
Date submitted2018-12-28
-
Date accepted2019-03-24
-
Date published2019-06-25
Modern physicochemical equilibrium description in Na2O–Al2O3–H2O system and its analogues
Equilibrium and non-equilibrium states of systems Na 2 O–Al 2 O 3 –H 2 O and K 2 O–Al 2 O 3 –H 2 O are crucial for establishing key technological parameters in alumina production and their optimization. Due to a noticeable discrepancy between experimental results and thermodynamic calculations based on materials of individual researchers the necessity of systematization and statistical processing of equilibrium data in these systems to create a reliable base of their physicochemical state, analysis and mathematical modeling of phase equilibria is substantiated. The tendency to a decrease of the hydration degree of solid sodium aluminates with increasing temperature and the transition of systems from the steady state of gibbsite to equilibrium with boehmite is revealed. The paper contains approximating functions that provide high-precision description of equilibrium isotherms in technologically significant area of Na 2 O–Al 2 O 3 –H 2 O and K 2 O–Al 2 O 3 –H 2 O concentrations. Approximating function can be simplified by dividing the isotherm into two sections with the intervals of alkaline content 0-0.25 and 0.25-0.4 mole/100 g of solution. The differences in solubility isotherms for Na 2 O–Al 2 O 3 –H 2 O and K 2 O–Al 2 O 3 –H 2 O systems provide are associated with changes in the ionic composition solutions that depends on concentration and temperature, as well as differences connecting with alkali cation hydration, which is crucially important for thermodynamic modeling of equilibria under consideration.
-
Date submitted2015-07-07
-
Date accepted2015-09-16
-
Date published2016-02-24
Activation of heap leaching of low-sulfide ores the invisible gold
- Authors:
- A. G. Sekisov
- Yu. I. Rubtsov
- A. Yu. Lavrov
This article deals with a physical-chemical model of heap leaching processes justifying new technological approaches to recovering dispersed forms of gold from ores, placer sands and deute-rogene mineral raw materials. The key process of this model includes lattice diffusion of high-energy hydrion minerals and hydroxyl-radicals formed as a result of photochemical and electro-chemical processing of initial reagent aqueous solutions. Active components of gas-water emulsions obtained while processing initial reagent solutions provide a structural and material trans-formation of a mineral lattice which concentrates clusters of dispersed gold creating conditions for its interacting with complexing compounds of process solutions. The article also considers the technological processes of activation heap leaching of dispersed gold from the Pogromnoe ore field and the results of the experiments conducted in percolators with their charge ranged from 3 to 100 kg. The results have proved the efficiency of using gas-water suspensions prepared in the pho-toelectrochemical reactor with active ion-radical oxidizing agents.
-
Date submitted2014-12-30
-
Date accepted2015-02-03
-
Date published2015-12-25
Open mining technique for unconventional mineral deposits
- Authors:
- G. A. Kholodnyakov
- K. R. Argimbaev
Nowadays the majority of deposits are successfully exploiting by mining enterprises with the help of traditional excavation and loading equipment. Typically, metals, construction materials, etc. are mined and extracted on these deposits, but modern society is progressing and producing new requirements to metals properties for creating a new type of equipment. The metals with new properties are located in unconventional areas: either in technogenic deposits (overburden dumps, tailings, etc.) or in hard-to-get natural formations. Technogenic mines, being a tailing of Kachkanarsky mining and processing plant, are referred to such unique deposits, which have expensive metals (scandium, gallium, strontium, titanium), as well as the natural deposit – rhenium deposit, located in the crater of an active volcano. Potentialities of open mining in the largest rhenium deposit with complex environmental occurrence have been analyzed in the paper. Temperature measurement results of adjacent strata and a temperature scheme of the host rocks on a separate site and the entire field have been presented. An open mining technique for a primary mining area as well as perspective methods of rock preparation for excavation, applicable to this particular deposit, has been considered.
-
Date submitted2010-07-20
-
Date accepted2010-09-04
-
Date published2011-03-21
Forming of the composition of hydrotermal solutions in hydrogeological massifs of ultrabasic rockes of the Mid-Atlantic ridge
- Authors:
- S. M. Sudarikov
- M. V. Krivitskaya
Difference in structural position and influence of ores from different types of sediments on the geochemical characteristic of ores are observed. Results of end member composition correlation analysis show negative link of H 2 S with CH 4 и Н 2 .
-
Date submitted2010-07-13
-
Date accepted2010-09-25
-
Date published2011-03-21
Hydrogeological typisation of the north part of the Mid-Atlantic ridge
- Authors:
- M. V. Krivitskaya
The deep basite-hyperbasite rocks wich are special features for the north part of the Mid-Atlantic Ridge (MAR) are observed. The hydrogeological structures of the MAR are distinguished.
-
Date submitted2009-10-13
-
Date accepted2009-12-29
-
Date published2010-09-22
Assessment of the level of technological production of coal reserves in mine fields with intensive mining of fiat-lying coal seams
- Authors:
- S. G. Baranov
- M. A. Rozenbaum
The levels of technological production of coal reserves in the stoping faces have been determined depending on the main determining factors, such as suitability of conditions, their preparation and equipment of longwalls.
-
Date submitted2009-09-21
-
Date accepted2009-11-10
-
Date published2010-06-25
Simultaneous doping of silicon carbide with aluminum and nitrogen
- Authors:
- I. I. Parfenova
Three atomic shell cluster of SiC is treated as a set of chemical bonds with tetrahedral coordination. Chemical bonds energies are determined in tight binding approximation taking into account second neighbors interaction and relaxation of atomic positions. Correlations in behavior of Al and N atoms in Si-C-Al-N system determine the quasibinary character (SiC) 1-x (AlN) x alloys. Inhomogeneous regions in (SiC) 1-x (AlN) x system were evaluated using the condition of mixing free energy minimum. We assumed that doping does not change the vibration spectra of the crystal.
-
Date submitted2009-07-05
-
Date accepted2009-09-25
-
Date published2010-04-22
Active methods for control of geomechanical state of rock mass in coal deposit mining under complicated geological-and-mining conditions
- Authors:
- F. N. Voskoboev
- Yu. A. Semenov
- V. A. Zvezdkin
The paper presents the main technologies, characteristics, schematic diagrams and parameters of active methods for control of geomechanical state of technogenic rock mass, domain and technical-and-economical efficiency of their industrial application.
-
Date submitted2009-07-06
-
Date accepted2009-09-24
-
Date published2010-04-22
Investigation of geomechanical processes in underground mining of mineral resources at the automated test bench for physical modeling
- Authors:
- B. Yu. Zuev
The paper presents the particular results of development of the method for modeling on equivalent materials in the recent years, concerning the evolution of the primary technical base of the laboratory – test benches, which allowed to supplement substantially the potentialities of physical modeling for its complex application jointly with the full-scale and mathematical methods in solving a number of actual tasks in mining geomechanics.
-
Date submitted2008-10-13
-
Date accepted2008-12-28
-
Date published2009-12-11
Ore-forming hydrothermal solutions and gas hydrate formation in the ocean
- Authors:
- S. M. Sudarikov
- S. S. Filatova
Geological and tectonic settings and thermobaric characteristics of hydrothermal activity are confronted with those of gas hydrate formation. Hydrocarbon concentrations and isotopic composition in hydrothermal fluids of mid-ocean ridges with different thickness of sediment cover and marginal oceanic basins are compared. The possible influence of rising thermal fluids on gas hydrate accumulations was analyzed and examples of hydrate formation linked with hydrothermal process are given.