-
Date submitted2024-10-29
-
Date accepted2024-10-29
-
Date published2024-11-12
Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths
In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.
-
Date submitted2022-01-28
-
Date accepted2022-04-26
-
Date published2022-07-26
On the presence of the postmagmatic stage of diamond formation in kimberlites
- Authors:
- Sergey K. Simakov
- Yuri B. Stegnitskiy
On nowadays multiphase and the facies heterogeneity of the formations are distinguished at the study of kimberlite pipes. Most researchers associate the formation of diamonds only with the mantle source. To date, satellite minerals with specific compositions associated with kimberlite diamonds have been identified as deep mantle diamond association. They are extracted from the concentrate of the kimberlites heavy fraction and may reflect the diamond grade of the pipe. For some minerals in the diamond association, however, they can not be reliable. Some researchers also revealed shallow diamond associations, related to the formation of serpentine, calcite, apatite, and phlogopite. There is recent data on the formation of diamonds in rocks of the oceanic crust. In the last years microdiamonds were identified in chromites of the oceanic crust in association with antigorite formed at 350-650 °C and 0.1-1.6 GPa. As a result, the authors established a postmagmatic kimberlitic stage of diamond formation associated with secondary mineral associations based on the experimental and mineralogical data for the conditions of the shallow upper mantle and crust. Mineralogical and petrographic studies of Angolan kimberlite pipe show that antigorite is the indicator mineral of this stage.
-
Date submitted2020-10-26
-
Date accepted2021-07-28
-
Date published2021-10-21
Investigation of the influence of the geodynamic position of coal-bearing dumps on their endogenous fire hazard
The paper investigates the hypothesis according to which one of the factors influencing the spontaneous combustion of coal-bearing dumps is its geodynamic position, i.e. its location in the geodynamically dangerous zone (GDZ) at the boundary of the Earth crust blocks. This hypothesis is put forward on the basis of scientific ideas about the block structure of the Earth crust and the available statistical data on the location of burning dumps and is studied using computer modeling. A dump located in the area of Eastern Donbass was chosen as the object of research. The simulation results show that the penetration of air into the dump body from the mine through the GDZ, which crosses the mining zone, is possible at an excess pressure of 1000 Pa created by the main ventilation fans. The fire source appearance in the dump body causes an increase in the temperature of the dump mass and becomes a kind of trigger that "turns on" the aerodynamic connection between the dump and the environment, carried out through the GDZ. It is concluded that the establishment of an aerodynamic connection between the mine workings and the dump through the GDZ can be an important factor contributing to the endogenous fire hazard of coal-bearing dumps. The simulation results can be used in the development of projects for monitoring coal-bearing dumps and measures to combat their spontaneous combustion.
-
Date submitted2019-07-11
-
Date accepted2019-09-04
-
Date published2019-12-24
Recent scientific research on electrothermal metallurgical processes
- Authors:
- E. Baake
- V. A. Shpenst
A wide range of industrial metallurgical heating and melting processes are carried out using electrothermal technologies. The application of electrothermal processes offers many advantages from technological, ecological and economical point of view. Although the technology level of the electro heating and melting installations and processes used in the industry today is very high, there are still potentials for improvement and optimization due to the increasing complexity of the applications and the strong requirements regarding the performance and quality of the products but also regarding the reduction of time and costs for the development of new processes and technologies. In this paper recent applications and future development trends for efficient heating and melting by electrothermal technologies in metallurgical processes are described along selected examples like induction heating for forging or rolling of billets, heat treatment of strips and plates, press-hardening processes, induction surface hardening of complex geometries, induction welding as well as induction melting processes.
-
Date submitted2019-03-25
-
Date accepted2019-05-23
-
Date published2019-08-23
Assessment of Rock-Burst Hazard in Deep Layer Mining at Nikolayevskoye Field
The paper presents results of conducted research using regional and local methods of forecast and control over geomechanical state of the rock mass at burst-hazardous Nikolayevskoye field, located in a geodynamically active region. The study subject is the ore mass of Nikolayevskoye field, characterized by man-induced and tectonic disturbances and high geodynamic activity. The aim of research was practical implementation of methods and instruments of forecast and control over geomechanical state of the burst-hazardous rock mass and safety improvement of mining operations. Exploitation practice of burst-hazardous fields demonstrates that forecast accuracy of hazardous rock pressure demands cutting-edge multi-level systems, where local methods and tools complement regional ones. A regional forecast of rock-burst hazard at Nikolayevskoye field was performed by means of seismoacoustic method using automated control system for rock pressure (ACSRP) «Prognoz-АDS». Local forecast was carried out using «Prognoz-L» device, geophysical (sample disking) method and visual observations of dynamic pressure manifestations in the mining tunnels. Quality assessment of stress-strain and burst state of the rock mass was performed using specialized software «PRESS 3D URAL». Integration of engineering and geomechanical data in the process of conducting research guarantees a relevant assessment of rock-burst hazard in various areas of the field at various stages of its development. Practical verification of the system, where local methods and tools complement regional ones, demonstrated satisfactory results at Nikolayevskoye mining plant, which makes it recommendable for other mining facilities extracting ore at great depths under similar conditions of active geodynamic processes.
-
Date submitted2019-01-10
-
Date accepted2019-03-02
-
Date published2019-06-25
Modeling of the welding process of flat sheet parts by an explosion
- Authors:
- M. A. Marinin
- S. V. Khokhlov
- V. A. Isheyskiy
The list of materials subject to explosive welding is very extensive and amounts to several hundred combinations of various alloys and metals, and the variety of explosive welding schemes has more than a thousand options. In almost all technical solutions, the process involves the sequential creation of physical contact of the materials to be welded and their connection due to plastic deformation of the contacting surfaces. The strength of such a connection depends on the mode of the welding process. With the correct selection of the parameters of the mode, it is possible to obtain a high-quality connection of the required strength. However, the experimental selection of such options is a very laborious and costly process. Computer simulation and application of mathematical models for solving dynamic problems of explosion mechanics simplifies the search for optimal parameters and allows to predict the expected result in the shortest possible time. The article discusses the issues of modeling of explosive welding of metals, calculations related to the parameters of the process of formation of the weld using the Ansys Autodyn software package. A model is presented for analyzing the deformation process of explosion welding of a plate and its connection with a matrix. The main parameters of explosion welding (velocity, pressure, time) are determined. The adequacy of the obtained values was evaluated in the systems aluminum – copper and copper – steel. It also provides a comparative analysis of simulation results and field experiments. Based on numerical calculations, a conclusion was substantiated on the suitability of the model obtained for a preliminary analysis of the main welding parameters at the preparatory stage.
-
Date submitted2018-11-20
-
Date accepted2018-12-28
-
Date published2019-04-23
Refined assessment of seismic microzonation with a priori data optimisation
- Authors:
- I. B. Movchan
- A. A. Yakovleva
The work is devoted to the issues of seismic microzonation representativeness, which is amongst the mandatory assessments that precedes civil and industrial construction. In addition to the practical approach and in accordance with the normative documentation, the authors propose parametric interpretation of the remote basis by means of tracing geodynamic zones and elements of the geoblock structure, where the leading marker of seismogenic risk zones is the anomaly of spatial variability of the geofield, coinciding with the discordant intersection of localised land structures. Verification of this marker is achieved by displaying a cartographic distribution image within the range of the seismic point increment, detailed on the basis of approximation dependencies.
-
Date submitted2018-09-22
-
Date accepted2018-11-08
-
Date published2019-02-22
Creation of temperature inhomogenities with the use of Peltier element for the mass-exchange processes intensification of the oil and gas industry
- Authors:
- V. G. Afanasenko
- Yu. L. Yunusova
The intensification of technological processes in the oil and gas industry is an urgent task for industrial production. Improving the efficiency of the processes leads to a decrease in the consumption of materials by the apparatus and the cost of their manufacture, an improvement in the quality of the produced product, and simplifies the transportation and installation of equipment. To achieve these goals, a new highly efficient equipment is being developed based on the use of various physical and chemical phenomena, their combinations, and new technological approaches. One of the most effective ways to solve such problems is pulse impact on the materials being processed, in which inhomogeneities of the process driving force are artificially created. The challenge of intensifying the processes occurring during the direct contact of the phases is the need to influence the system being processed locally - in the area of the interface, since it is there that the substances transfer from one phase to another. The object of article's scientific research – mass-exchange process, which is most widespread in oil and gas technology. As a model, the process of liquid evaporation is chosen, on which the separation of mixtures by rectification is based – the main process of the oil and gas processing industry. The heterogeneity of the driving force of the mass transfer process was created using a thermoelectric converter, the principle of which is based on the Peltier effect, in a series of experiments. Such converters allow creation of higher temperature gradient and, consequently, a greater temperature heterogeneity in the investigated system compared with traditional resistance electric heaters at the same energy expenditure. The article discusses the influence of the temperature inhomogenities location on the efficiency of mass-exchange processes, specifically the evaporation process. In experimental studies, the evaporation rate was estimated by measuring the mass evaporation velocity of a liquid. It is noted that the creation of a temperature gradient on the free surface of the liquid phase using a Peltier element with a specific power of 1.8 kW/m 2 leads to a twofold intensification of the evaporation process.
-
Date submitted2018-07-18
-
Date accepted2018-09-22
-
Date published2018-12-21
Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit
- Authors:
- D. V. Sidorov
- M. I. Potapchuk
- A. V. Sidlyar
The subject of the research is the stress-strain and rock burst hazardous state of the ore massif of the Nikolaevskoe polymetallic deposit, formed under the influence of complex mining-geological and mining-technical factors. The purpose of the research is to establish the peculiarities of the formation of technogenic stress fields at the deposit, which is characterized by a block structure, a complex tectonic system and the presence of a large volume of developed spaces. Volumetric geodynamic modeling of the stress-strain state of the massif at different stages of the development of the deep horizons of the deposit was carried out by collecting information on the structure, properties and geodynamic state of the rock mass. The assessment of stress changes taking into account the effect of hypsometry, the configuration of the selvages, the physical-mechanical properties of the ore deposit and host rocks, the presence of tectonic disturbances was made using the developed numerical algorithms, the automation equipment of the initial data and the PRESS 3D URAL software. The simulation made it possible to establish that tectonic faults in the massif lead to a qualitative change in the stress-strain state in certain parts of the ore massif and in the pillars, namely, the reduction of stresses along the tectonic faults and their growth in nearby pillars. The identified features of the distribution of stresses in the tectonically disturbed rock massif of the Nikolaevskoe deposit will allow to identify in advance potentially hazardous areas both at the planning stage of mining operations and during development, as well as to work out effective rock burst measures to increase the safety of mining. The results of research can be used in enterprises with similar mining-geological and mining-technical conditions.
-
Date submitted2017-09-10
-
Date accepted2017-11-10
-
Date published2018-02-22
Research of heat generation indicators of gas engines
- Authors:
- O. N. Didmanidze
- A. S. Afanasev
- R. T. Khakimov
A comprehensive strategy for reviving the production of mining industry equipment and ensuring its competitiveness includes the wide use of gas engines for various purposes. Experimental studies of the working cycle of a gas engine are one of the main tasks in determining the heat generation characteristics. To this end, indicator charts were recorded in various modes, which were subjected to analysis in order to determine the key parameters characterizing intra-cylinder processes. According to the experimental program, the maximum cycle pressure, the rate of pressure build-up, the heat generation characteristic, the first heat generation phase, the duration of the second combustion phase, and the effect of the ignition advance angle for the ignition period were determined. The results of an experimental study of the influence of gas engine working process with allowance for the change in the ignition advance angle for the ignition period are described and the parameters of the maximum cycle pressure, the rate of pressure build-up, and the heat generation characteristics are determined. In the processing of data, integral charts are constructed, the working cycle parameters are calculated, and the dynamics of the engine heat generation is determined.
-
Date submitted2016-10-30
-
Date accepted2017-01-02
-
Date published2017-04-14
Result of combining data from impulse electrical prospecting and aeromagnetic prospecting for groundwater exploration in the south of Yakutia
In 2014 in the south of Yakutia in the course of groundwater exploration works a complex of geophysical methods was tested: aeromagnetic and electrical prospecting was carried out using near-field transient sounding and electromagnetic sounding with induced polarization. Prospective structures for hydrogeological drilling are zones of discontinuous tectonic faults. In order to identify them, data from aeromagnetic and electrical prospecting were used. Results of drilling confirmed the presence of watered areas; however, analysis of obtained information allowed to come to the conclusion that the amount of water in the faults has no direct connection to electrical conductivity.
-
Date submitted2016-11-07
-
Date accepted2016-12-27
-
Date published2017-04-14
Method of determining characteristics for air heating system in railway tunnels in harsh climatic conditions
- Authors:
- S. G. Gendler
- S. V. Sinyavina
The article describes climatic and mining-technical conditions influencing frost formation process. It was noted that the radical tools for preventing frost formation in winter periods is creation of positive temperature in tunnels by heating the incoming outside air. We formulated tasks, which solution will promote development of engineering calculation method for heating systems parameters. The article provides results of theoretical studies based on mathematical modelling and analytical solutions and data on field instrumental measurements, which were processed with similarity criteria. It compares mathematical modelling results on determining amount of tunnel incoming air flow with portal gates and calculations data from experimentally determined coefficient of local resistance. We proved the energy efficiency of placing the tunnel portal gates and validated the places of preheated air injection points and removal of cool air from this flow, which provides maximal energy effect.
-
Date submitted2015-12-01
-
Date accepted2016-02-29
-
Date published2016-12-23
Simulation of diesel engine energy conversion processes
- Authors:
- A. S. Afanasev
- A. A. Tretyakov
In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed. The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.
-
Date submitted2015-12-24
-
Date accepted2016-02-04
-
Date published2016-12-23
Geodynamic methods for assessing methane distribution in bituminous coal deposits and measures to intensify methane fluxes during mine gas drainage
- Authors:
- E. V. Goncharov
- S. V. Tsirel
This paper explores states of methane within the coal bearing stratum and shows heavy dependency of the intrastratal gas migration on the forms of porous space and petrographic properties of coal. The adsorbed methane is found to be predominant in the coal of Kuznetsk Basin. Different forms of coal diffusion and filtration are described revealing their dependency on geological and thermodynamic conditions. The paper provides justification for the primary focus on geodynamic processes when designing gas drainage systems and applicability of morphometric methods and remote sensing data for their identification. The significance of researches into the processes activating exothermic reactions resulting in methane transition to free state is explained. The paper presents the results of using seismic-acoustic stimulation techniques as one of the practical approaches to addressing this issue. Results of successful industrial testing have been compared with the results of numerical modelling of stress-strain state, which can also be managed through seismic-acoustic stimulation.
-
Date submitted2015-12-29
-
Date accepted2016-02-21
-
Date published2016-12-23
Poorly studied phenomena in geoelectrics
- Authors:
- V. S. Mogilatov
Undoubtedly, modern geoelectric technologies emerge in the result of the development of traditional approaches and techniques. However of more interest is the appearance of completely new technologies based on new effects and new models of interaction of geological medium and electromagnetic field. The author does not commit to indicate principally new directions, but only wants to discuss some poorly known facts from the theory and practice of geoelectrics. The outcome of this study could be considered attracting the attention of experts to non-traditional signals in geoelectrics. The reviewed phenomena of interest, not fully implemented in practice in the author’s opinion, are field split into two polarizations: transverse electric (the ТЕ-field) and transverse magnetic (the ТМ-field), then some poorly known properties of ТМ-field, the role of bias currents, the anisotropy of horizontal resistances, the role of geomagnetic field in geoelectric sounding, the unique resolution of CSEM (Controlled Source Electro-Magnetic) techniques at sea.
-
Date submitted2015-10-01
-
Date accepted2015-12-11
-
Date published2016-08-22
The technology of extracting gaseous fuel based on comprehensive in situ gasification and coalbed degassing
The study considers a comprehensive technology (designed and patented by the authors) of developing coal and methane deposits which combines in situ gasification of lower coalbeds in the suite of rock bump hazardous gassy beds, extraction of coal methane and mechanized mining of coal. The first stage of the technology consists in mining gaseous fuel that enables one to extract up to 15-20 % of total energy from the suite of coalbeds. Geodynamic zoning is used to select positions for boring wells. Using the suggested technology makes it possible to solve a number of tasks simultaneously. First of all that is extracting gaseous fuel from the suite of coalbeds without running any mining works while retaining principal coalbeds in the suite and preparing them for future processing (unloading and degassing). During the first phase the methane-coal deposit works as a gas deposit only, the gas having two sources – extracted methane (which includes its locked forms, absorbed and adsorbed) and the products of partial incineration of thin coalbeds, riders and seams from thee suite. The second stage consists in deep degassing and unloading of coal beds which sharply reduces the hazards of methane explosion and rock bumps, thus increasing the productivity of mechanized coal mining. During the second stage coal is mined in long poles with the account of degassing and unloading of coal beds, plus the data on gas dynamic structure of coal rock massif.
-
Date submitted2015-07-14
-
Date accepted2015-09-09
-
Date published2016-02-24
Engineering and geomechanical forecast for waste disposal in underground caverns including earthquake-prone zones
- Authors:
- O. V. Kovalev
The article aims at obtaining representative scientifically based data to determine parameters of a necessary-safe condition of the rock massif (RM) in underground waste diposal caverns zones, including earthquake-prone zones. The main requirements for underground caverns for hazardous waste disposal and for their construction technology are described. The subject of the research is underground solution caverns in halogen rocks. Data for justification of safe waste disposal conditions in underground salt caverns and its stages are presented. A complex approach to the solution of the research problem is described. The main aspects of dynamic influence of seismic waves on underground caverns stability are considered. Taking into account seismic-risk zoning data on the research region some significant parameters of a possible seismic impact on the experimental cavern are calculated. The article points out the necessity of superincumbent rock and surface displacement assessment for the experimental site zone using the suggested complex approach and including the analysis of surveying data and results of rock mass geomechanical modeling.
-
Date submitted2014-12-29
-
Date accepted2015-02-15
-
Date published2015-12-25
A study of distillates physical and chemical properties and residues after thermodestructive and catalytic processes and their application in the mining industry
- Authors:
- N. K. Kondrasheva
- O. V. Zyrianova
When transporting overburden rocks in a cold season, the lower layer of materials freezes to working surfaces of transport equipment, and at long transportations – congeals under its own weight. As a result, up to 50 % of rock remains in the vehicle, while the unloaded part represents indiscreete frozen mass. It considerably complicates the process of unloading transport and leads to increased labor and financial expenses. A rational and effective remedy for these problems is transport equipment and bulk material processing with chemical agents of oil and petrochemical origin – mixtures of distillate and bottom frations obtained as a result of thermodestructive processes during petroleum feedstock manufacturing. The article presents data on the quality of distillates and residual products of oil recycling, which are used as initial components for producing preventive drugs, which are used to prevent sticking and freezing of overburden rocks during transportation and storage in the cold time of year, as well as drugs used for pit roads treatment in surface mining operations. Optimal component compositions of new petrochemicals are developed, and the physical and chemical properties of the received test samples have been studied.
-
Date submitted2014-09-02
-
Date accepted2014-11-25
-
Date published2015-06-26
Forecasting changes in the chemical composition of reservoir waters in the course of oil production according to the results of thermodynamic modelling
- Authors:
- S. M. Sudarikov
- E. N. Leont’eva
The article deals with hydrogeochemical processes in the productive strata in the course of oil field development. The impact of flooding on the change of the chemical composition of reservoir water and the possibility of salification are analyzed. Computer thermodynamic modelling of physico-chemical processes is used for prediction of salification in oil fields.
-
Date submitted2013-07-16
-
Date accepted2013-09-20
-
Date published2014-03-17
Choice and valuation of similarity parameters for aero-gas-dynamic modeling with main roof collapse
- Authors:
- V. V. Smirnyakov
The article describes the necessary conditions for similarity parameters choosing for aero-gas-dynamic modeling with main roof collapse and it has been made analysis of them.
-
Date submitted2009-10-20
-
Date accepted2009-12-25
-
Date published2010-09-22
Scientific-methodical foundation for geodynamic safety of oil and gas objects
- Authors:
- Yu. O. Kuzmin
It was shown on example of a number of deposits that space contemporaneity of emergency situations at wells and pipeline systems to fault zones finds its natural explanation within the concepts of existence of SD processes in such zones. In such situation it is essential to conduct very thoughtful system of diagnostics of crust fields with fluctuation deformation characteristics. For that purpose follow-up realization of three interconnected procedures must be conducted: detailed and measurement-assured monitoring (geodynamic test-area), complex several-variant interpretation of results of the monitoring and selection of different scenarios of possible negative contour, determination of the level of geodynamic risk, forecasting the environmental, social and economic consequences, and formulating strategies for preventive arrangements.
-
Date submitted2009-10-12
-
Date accepted2009-12-29
-
Date published2010-09-22
Types and mechanisms of geodynamic hazard in mineral deposits mining and exploitation of buried and surface engineer constructions
- Authors:
- A. N. Shabarov
It is shown that major emergencies in mineral deposits mining and in exploitation of buried and surface engineer constructions are attributed to active faults. Classification of hazardous zones has been developed. The mechanisms of influence of geodynamic hazard in coal mines and pipeline exploitation were determined. The technology of reduction of geodynamic risk was suggested.
-
Date submitted2009-10-23
-
Date accepted2009-12-10
-
Date published2010-09-22
Geomechanical substantiation of projects of ore deposits mining
- Authors:
- V. V. Zubkov
- A. A. Filinkov
The paper presents the monitoring system for better geodynamic safety in mining of mineral deposits. The suggested system of geodynamic monitoring allows us to evaluate the stress state of ore massif for the planned variant of mining and to give recommendations on the safe deposit mining. Based on the analysis of the modeling data, consideration was given to one of the variants of geomechanical substantiation of the project of ore deposit mining.
-
Date submitted2009-10-17
-
Date accepted2009-12-07
-
Date published2010-09-22
Regularities of progressing of technogenic seismic activity in mining areas
- Authors:
- S. V. Tsirel
Regularities of variation of cumulative graphs of seismic events repetition in process of transferring from natural seismic activity to the technogenic one are studied. Processes of growth of technogenic seismicity in mining regions on examples of the Kola peninsula and Kuzbass are reviewed.
-
Date submitted2009-10-01
-
Date accepted2009-12-02
-
Date published2010-09-22
Specific manifestations of tectonic and seismic activity in Kuzbass
- Authors:
- A. I. Ekimov
- S. V. Tsirel
The conducted observations demonstrated the substantial growth and variation of nature of tectonic and seismic activity in Kuzbas. Growth of geodynamic risks is marked. Methods for study of observable processes are suggested.