-
Date submitted2024-03-20
-
Date accepted2024-11-07
-
Date published2025-04-25
Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation
The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values of pressure drawdown and changes in stress-strain properties depending on the area of mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.
-
Date submitted2023-03-16
-
Date accepted2023-12-27
-
Date published2024-04-25
Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks
Operation of vertical mine shafts in complex mining and geological conditions is associated with a number of features. One of them is a radial displacement of the concrete shaft lining, caused by the influence of mining pressure on the stress-strain state of the mine workings. A rigid reinforcing system with shaft buntons fixed in the concrete lining thus experiences elastoplastic deformations, their value increases with time. It results in deviation of conductors from design parameters, weakening of bolt connections, worsening of dynamic properties of geotechnical system “vehicle – reinforcing”, increase of wear rate of reinforcing system elements, increase of risks for creating an emergency situation. The article offers a comprehensive assessment of displacements of characteristic points of the bunton system based on approximate engineering relations, numerical modeling of the deformation process of the bunton system and laser measurements of the convergence of the inner surface of the concrete shaft lining. The method was tested on the example of the reinforcing system of the skip-cage shaft of the potash mine. Displacement of the characteristic points of the reinforcing system is determined by the value of radial displacements of the surface of the concrete shaft lining. Evaluation of the radial displacements was made using monitoring measurements and profiling data. The results obtained make it possible to justify the need and timing of repair works. It is shown that the deterioration of the reinforcing system at different levels occurs at different rates, defined, among other things, by mechanical properties of the rock mass layers located at a given depth.
-
Date submitted2023-04-11
-
Date accepted2023-10-25
-
Date published2024-07-04
Acid mine water treatment using neutralizer with adsorbent material
One of the biggest issues in the mining sector is due to acid mine drainage, especially in those abandoned mining operations and active ones that fail to adequately control the quality of their water discharge. The removal degree of copper, iron, lead, and zinc dissolved metals in acid mine drainage was investigated by applying different proportions of mixtures based on neutralizing reagent hydrated lime at 67 % calcium oxide (CaO), with adsorbent material – natural sodium bentonite, compared to the application of neutralizing reagent without mixing, commonly used in the neutralization of acid mining drainage. The obtained results show that the removal degree of dissolved metals in acid mine drainage when treated with a mixture of neutralizing reagent and adsorbent material in a certain proportion, reaches discharge quality, complying with the environmental standard (Maximum Permissible Limit), at a lower pH than when neutralizing material is applied without mixing, registering a net decrease in the consumption unit of neutralizing agent express on 1 kg/m3 of acid mine drainage. Furthermore, the sludge produced in the treatment with a mixture of the neutralizing reagent with adsorbent material has better characteristics than common sludge without bentonite, since it is more suitable for use as cover material, reducing the surface infiltration degree of water into the applied deposit.
-
Date submitted2022-08-10
-
Date accepted2023-02-28
-
Date published2024-02-29
Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors
The task of sludge removal to the surface during construction of directional and horizontal wells and strongly curved radial channels is relevant. For stable operation of technical system “Perfobore”, it is proposed to use a circulating sub that ensures efficient cleaning of channel wellbore from the drilled rock. Two schemes of technical system “Perfobore” are considered, consisting of two seven-meter coiled tubing, a positive displacement motor, a bit and one circulating sub in the first scheme and two subs in the second scheme. For each of the schemes CFD modeling was implemented to determine values of pressure and speed. It was found out that the use of two circulating subs in the assembly is more efficient. In order to confirm the numerical experiment, bench tests were carried out. It was determined that the designed circulating sub can eject up to 25 % of pumped drilling fluid. The bench tests of full-size technical system “Perfobore” for drilling 14-meter channels with two circulating subs showed that the axial load on positive displacement motor produced by hydraulic loader was 3000 N and pressure drop depending on flow rate was 1.5-2.0 MPa. This allows the motor to operate at maximum power.
-
Date submitted2022-08-05
-
Date accepted2022-11-17
-
Date published2023-02-27
Feasibility study of using cogeneration plants at Kuzbass coal mines
The paper considers the problem of reducing greenhouse gas emissions in the process of coal mining during the coal mine methane utilization in power supply systems. An algorithm to form recommendations for the implementation of CMM generation is presented. A simulation model for one of the Kuzbass coal mines was developed in the PowerFactory software application. The simulation model considers the uneven nature of the power consumption of mining equipment. As a result of modeling, daily power consumption profiles and voltage levels in the coal mine power supply system were determined before and after the implementation of the proposed measures. Based on the results, the technical and economic effects was estimated, which consisted in reducing the direct and indirect carbon footprint, electricity and capacity fees. It has been established that the cost of carbon dioxide emission quotas significantly affects the investment attractiveness of cogeneration projects. Based on the results, recommendations are given to stimulate the development of small generation in coal mines.
-
Date submitted2020-12-16
-
Date accepted2021-07-27
-
Date published2021-10-21
Features of the thermal regime formation in the downcast shafts in the cold period of the year
In the cold period of the year, to ensure the required thermal regime in underground mine workings, the air supplied to the mine is heated using air handling systems. In future, the thermodynamic state of the prepared air flow when it is lowered along the mine shaft changes due to the influence of a number of factors. At the same time, the processes of heat and mass exchange between the incoming air and its environment are of particular interest. These processes directly depend on the initial parameters of the heated air, the downcast shaft depth and the presence of water flows into the mine shaft. Based on the obtained experimental data and theoretical studies, the analysis of the influence of various heat and mass transfer factors on the formation of microclimatic parameters of air in the downcast shafts of the Norilsk industrial district mines is carried out. It is shown that in the presence of external water flows from the flooded rocks behind the shaft lining, the microclimatic parameters of the air in the shaft are determined by the heat transfer from the incoming air flow to the underground water flowing down the downcast shaft lining. The research results made it possible to describe and explain the effect of lowering the air temperature entering the underground workings of deep mines
-
Date submitted2020-05-18
-
Date accepted2020-06-16
-
Date published2021-04-26
Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement
The article discusses the solution to the problem of underground railway transport slipping in dynamic modes, which occurs when there is a significant difference in the speeds of the driving and driven pairs of wheels. The state of the rail surfaces largely determines the coefficient of adhesion, therefore, using a mathematical model, the condition for the dependence of the magnitude of slipping and tractive effort is selected. For effective acceleration and deceleration of an electric locomotive, it is necessary to control the coefficient of adhesion at a certain level. A simulation model of rolling stock has been created, which for the first time takes into account a mechanical system with distributed parameters. In the structural diagram of the automatic control system of traction electric drives with frequency regulation, such factors as the volume of goods being moved, rolling friction, slope (rise) levels and the state of the rail track are taken into account. The simulation results show the features of the movement and stops of the freight train not only by the diagrams of speed and forces in the modes of acceleration-deceleration and uniform movement, but also the positions of the plungers and tractive forces on the couplings of the electric locomotive and all trolleys involved in the movement of goods. The practical application of the proposed method lies in the possibility of starting a heavily laden train from its place on the ascent section in conditions of insufficient adhesion coefficient with contaminated roads.
-
Date submitted2019-01-03
-
Date accepted2019-03-23
-
Date published2019-06-25
Normalization of thermal mode of extended blind workings operating at high temperatures based on mobile mine air conditioners
Thermal working conditions in the deep mines of Donbass are the main deterrent to the development of coal mining in the region. Mining is carried out at the lower technical boundaries at a depth of almost 1,400 m with a temperature of rocks of 47.5-50.0 °C. The air temperature in the working faces significantly exceeds the permissible safety standards. The most severe climatic conditions are formed in the faces of blind development workings, where the air temperature is 38-42 °С. It is due to the adopted coal seam mining systems, the large remoteness of the working faces from the main air supply openings, the difficulty in providing blind workings with a calculated amount of air due to the lack of local ventilation fans of the required range. To ensure thermodynamic safety mine n.a. A.F.Zasyadko we accepted the development of a draft of a central cooling system with ground-based absorption refrigerating machines with a total capacity of 9 MW with the implementation of the three types of generation principle (generation of refrigeration, electrical and thermal energy). However, the long terms of design and construction and installation work necessitated the use of mobile air conditioners in blind development faces. The use of such air conditioners does not require significant capital expenditures, and the terms of their commissioning do not exceed several weeks. The use of a mobile air conditioner of the KPSh type with a cooling capacity of 130 kW made it possible to completely normalize the thermal working conditions at the bottom of the blind workings 2200 m long, carried out at a depth of 1220-1377 m at a temperature of host rocks 43.4-47.5 °С. It became possible due to the closest placement of the air conditioner to the face in combination with the use of a high-pressure local ventilation fan and ducts, which ensured the air flow produced by the calculated amount of air. The use of the air conditioner did not allow to fully normalize the thermal conditions along the entire length of the blind face but reduced the urgency of the problem of normalizing the thermal regime and ensured the commissioning of the clearing face.
-
Date submitted2018-12-25
-
Date accepted2019-03-08
-
Date published2019-06-25
Determination of the operating time and residual life of self-propelled mine cars of potassium mines on the basis of integrated monitoring data
Statistical data on the reliability of self-propelled mine cars (SPMC), operating in the potassium mines of the Verkhnekamskoye potassium and magnesium salts deposit are analyzed. Identified the main nodes that limit the resource SPMC. It has been proven that the most common failures of self-propelled cars are the failure of wheel hubs, bevel gears and traveling electric motors. The analysis of the system of maintenance and repair of mine self-propelled cars. It is indicated that the planning and preventive system of SPMC repairs is characterized by low efficiency and high material costs: car maintenance is often carried out upon the occurrence of a failure, which leads to prolonged downtime not only of a specific haul truck, but of the entire mining complex. A method for assessing the technical condition of the electromechanical part of a mine self-propelled car by the nature of power consumption is proposed. This method allows you to control the loading of the drives of the mine self-propelled car, as well as to assess the technical condition of the drives of the delivery machines in real time. Upon expiration of the standard service life of a mine propelled car specified in the operational documentation, its further operation is prohibited and the car is subject to industrial safety expertise. As part of the examination, it is necessary to determine the operating time and calculate the service life of a mine self-propelled car outside the regulatory period. A method has been developed for determining the residual service life of mine car on the basis of instrumentation control data in the conditions of potash mines.
-
Date submitted2019-01-11
-
Date accepted2019-03-17
-
Date published2019-06-25
Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells
- Authors:
- L. Yu. Levin
- M. A. Semin
- O. S. Parshakov
Development of mineral deposits under complex geological and hydrogeological conditions is often associated with the need to utilize specific approaches to mine shaft construction. The most reliable and universally applicable method of shaft sinking is artificial rock freezing – creation of a frozen wall around the designed mine shaft. Protected by this artificial construction, further mining operations take place. Notably, mining operations are permitted only after a closed-loop frozen section of specified thickness is formed. Beside that, on-line monitoring over the state of frozen rock mass must be organized. The practice of mine construction under complex hydrogeological conditions by means of artificial freezing demonstrates that modern technologies of point-by-point and distributed temperature measurements in test wells do not detect actual frozen wall parameters. Neither do current theoretical models and calculation methods of rock mass thermal behavior under artificial freezing provide an adequate forecast of frozen wall characteristics, if the input data has poor accuracy. The study proposes a monitoring system, which combines test measurements and theoretical calculations of frozen wall parameters. This approach allows to compare experimentally obtained and theoretically calculated rock mass temperatures in test wells and to assess the difference. Basing on this temperature difference, parameters of the mathematical model get adjusted by stating an inverse Stefan problem, its regularization and subsequent numerical solution.
-
Date submitted2018-11-18
-
Date accepted2019-01-17
-
Date published2019-04-23
Calculation of elastoviscoplastic displacement of well walls in transversal and isotropic rocks
- Authors:
- A. G. Gubaidullin
- A. I. Moguchev
The relevance of the work is justified by the need to improve the technical and economic indicators of well construction based on forecasting and preventing drilling tools sticking due to the narrowing of an open well bore in the intervals of transversely isotropic rocks. A mathematical model of elastic-viscous-plastic displacement of the walls of inclined and horizontal wells has been developed during the narrowing of the open borehole due to rock creep in the intervals of transversely isotropic rocks. In the program developed based on this mathematical model, the calculation of the elastic-viscous-plastic displacement of the walls of an obliquely directed and horizontal well in the reservoir of argillite from the Western Siberia deposit was carried out. As a result of the calculation, it was established that after opening the rock with bits, the cross-section of the open borehole due to the rock creep eventually takes the form of an ellipse, the small axis of which is in the plane of the upper wall of the well and decreases with time.
-
Date submitted2018-11-09
-
Date accepted2019-01-22
-
Date published2019-04-23
Determining the stability of the borehole walls at drilling intervals of loosely coupled rocks considering zenith angle
- Authors:
- P. A. Blinov
During development of drilling projects, a whole array of data is needed considering the properties of rocks and the conditions of their bedding. Accounting for geomechanical processes occurring in the near-wellbore zone allows avoiding many complications associated with the violation of the wellbore walls stability at all stages of its construction and operation. Technological and technical factors such as vibration and rotation of the drilling string, formation of launders during the descent and ascent of the assembly, pressure pulsation during the start and stop of pumps, hydrostatic and hydrodynamic pressure of the drilling fluid, its composition and properties, have a great influence on the stress-strain state of the medium opened by the well. The washing fluid circulating in the well should provide backpressure to the reservoir, not interact with the rocks chemically, colmatage channels in porous and fractured rocks, preventing penetration of the mud into the medium, by creating an impermeable barrier at drilling clay seams that are prone to swelling, cracking, etc. The article discusses the method for determining the stability of the directed well walls, taking into account the penetration of drilling mud into the pores and fractures of rocks. The technique will allow adjusting the zenith angle of the well during the workout of an unstable interval at the design stage, or selecting a drilling fluid composition to ensure fail-safe drilling.
-
Date submitted2015-08-21
-
Date accepted2015-10-24
-
Date published2016-04-22
Results of the 5G borehole drilling at russian antarctic station «Vostok» and researches of ice cores
- Authors:
- N. I. Vasilev
- A. N. Dmitriev
- V. Ya. Lipenkov
We produce an information about results and features of the 5G borehole drilling in Antarctic layer at Russian station Vostok. Main regularities of the change structured and physical properties by Antarctic ice layer depth, which determine mechanical and reological properties if ice, which influence to sinking of a borehole and to the maintaining of it in a working condition, the safe and competitive technologies creation for drilling of strong ice layers and the environmentally safe technology of the subglacial reservoirs unsealing. We also produce results of the ice cores researching and the paleoclimatic raws construction, which are reconstructed by the ice cores researching from Vostok station, which is compared with isotopic graph. This graph describes changes of World ocean level.
-
Date submitted2013-07-12
-
Date accepted2013-09-22
-
Date published2014-03-17
Method of normal load prediction on vertical shaft lining based on nonlinear behaviour of rock mass
- Authors:
- A. G. Protosenya
- Nguen Ny Bai
Method of normal load prediction on vertical shaft lining which is constructed in nonlinear rock mass is suggested. It is supposed, that limit state zone is formed around excavation. The deformation properties of rock mass in the suggested method are determined according to nonlinear rock model. In order to predict stress and strain state around excavation the equations of deformation plasticity theory are used. The Mohr-Coulomb strength criteria is taken as a yield surface.
-
Date submitted2013-07-22
-
Date accepted2013-09-24
-
Date published2014-03-17
Contemporary Problems of salvaging drill cuttings on the Western Siberia oilfields of the final stage of development
- Authors:
- V. V. Katsilo
The article deals with the problem of disposing of industrial and technological drilling wastes due to the application of salt biopolymer drilling fluids for extraction of residual oilfields of Western Siberia, which are at an final stage of development using the technology of directional drilling. The problem of disposal of drilling waste in the oilfields of the final stage of development is proposed to solve through the introduction of protective functions of the complex engineering activities, including, the development of waterproofing layer of clay cuttings, which is formed by drilling the top of the production casing, for different host rock cuttings.
-
Date submitted2009-10-11
-
Date accepted2009-12-26
-
Date published2010-09-22
The analysis of factors, that cause processes of open hole wells’ destructions of Gatchina underground gas storage reservoir and prediction of sand effects
- Authors:
- D. V. Grishin
- A. V. Petukhov
- A. A. Petukhov
The peculiarities of elastic stresses in open hole wells’ of Gatchina gas storage reservoir are researched. It is revealed that in depression more than 1,5 MPa gas bearing rocks start to destroy. On the basis of studying of correlation relation between technological parameters of gas wells’ production and evacuation of sand the equations of plural regression are constructed. These equations are used to make prediction of sand evacuation at each producing gas well.
-
Date submitted2009-10-06
-
Date accepted2009-12-30
-
Date published2010-09-22
Research of deformation, strength and filtration characteristics of Nizhnechutinskoe oil field’s reservoirs in case of depression making in the process of oilwells exploitation
- Authors:
- A. V. Petukhov
- A. A. Petukhov
It is determined that main reasons of permeability reservoirs decrease in Nizhnechutinskoe oil field are capillary pressures and elastic stresses, appearing at depression making. It is displayed that to reduce tangential stresses in oil bearing reservoirs it is expedient to make vertical slits in oilwells’ open holes.
-
Date submitted2009-10-07
-
Date accepted2009-12-22
-
Date published2010-09-22
Providing of safe conditions for mining of shaftbottom protective pillars in deep ore mines at Тalnakh
- Authors:
- V. A. Zvezdkin
- A. G. Anokhin
- R. B. Galaov
Consideration is given to the causes complicating the mining of shaftbottom pillar and protection of shaft lining. The analysis is given to the formation of stress-strain state of the protective pillar and its enclosing rocks. Practical recommendations are given for control of deformation and stresses in the shaftbottom mass during extraction of protective pillars in deep ore mines at Talnakh.
-
Date submitted2009-08-30
-
Date accepted2009-10-02
-
Date published2010-02-01
Estimation of stresses in system «massive – support – shaft drift» at dynamic loadings
- Authors:
- I. E. Dolgiy
- D. A. Kotikov
In article the question of dynamic influence on shaft drift a moving vessel is considered. Dependences of pressure in system «massive – support – shaft drift» from various in a direction and value of the loadings received by means of a method of final elements are resulted.
-
Date submitted1953-07-28
-
Date accepted1953-09-13
-
Date published1954-12-04
О расчете подъемных шахтных канатов
- Authors:
- Unknown
Применяемый в настоящее время расчет подъемных шахтных канатов на прочность носит явно условный характер. В основание этого расчета положен так называемый статический коэффициент безопасности, представляющий отношение разрывающей нагрузки к нагрузке статической (вес каната и концевого груза). Само собой разумеется, что при таком способе расчета динамическая нагрузка совершенно не учитывается и действительное значение коэффициента безопасности (динамического) остается неизвестным. Естественно было ожидать, что указанное положение привело из понятных соображений осторожности к несколько преувеличенным значениям коэффициента безопасности, особенно для глубоких шахт, где вес каната играет существенную роль. В силу этого обстоятельства в американской практике значение упомянутого коэффициента устанавливается дифференцированно, в зависимости от глубины шахты и тем меньше, чем больше упомянутая глубина. По-видимому, условия работы каната в глубоких шахтах считаются более благоприятными в смысле величины напряжений. Следует все-таки указать, что последнее утверждение, хотя и носит на первый взгляд более или менее вероятный характер, до сих пор еще не является вполне обоснованным и, кроме того, имеет исходным пунктом оценку напряжений при нормальном режиме подъема.