Submit an Article
Become a reviewer

Search articles for by keywords:
частотно-регулируемый электропривод

Editorial
  • Date submitted
    2023-07-19
  • Date accepted
    2023-07-19
  • Date published
    2023-07-19

Energy efficiency in the mineral resources and raw materials complex

Article preview

Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.

How to cite: Shklyarskiy Y.E., Skamyin A.N., Jiménez Carrizosa M. Energy efficiency in the mineral resources and raw materials complex // Journal of Mining Institute. 2023. Vol. 261 . p. 323-324.
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts

Article preview

The efficiency of a mining and processing plant depends on the level of complex mechanization of the production process. In mineral extraction, haulage is a major cost category, with haul trucks being the key component of the mining transportation system. To improve production performance, mining operations can increase their haulage turnover and reduce transportation costs, which necessitates making haul trucks more reliable. This can be done by improving their mean time to first failure (MTFF) indicators. This article analyzes the reliability status of the traction drive system inhaul trucks operating in the mineral resources sector. It provides a quantitative assessment of traction drive system failures resulting from part defects and discusses the associated repair costs. By examining failure data from 2018 to 2022 and the results of vibration tests performed on a diesel generator, the study reveals that the most expensive failures are associated with defects in the synchronous generator, which are primarily caused by elevated external vibrations. Based on basic vibration tests and vibration spectra tests at different operating modes, recommendations have been formulated concerning the generator’s robustness to external mechanical forces and the ways to increase the generator’s protection grade to prevent dust intrusion. The study also identifies the frequency range that poses the greatest risk of damage to the windings.

How to cite: Nazarychev A.N., Dyachenok G.V., Sychev Y.A. A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts // Journal of Mining Institute. 2023. Vol. 261 . p. 363-373. EDN HCLPJB
Energy industry
  • Date submitted
    2022-10-13
  • Date accepted
    2022-12-13
  • Date published
    2023-07-19

A complex model of a drilling rig rotor with adjustable electric drive

Article preview

A modified mathematical model of an asynchronous electric drive of the rotor – a drill string – a bit – a rock is considered and implemented, which develops and generalizes the results of previously performed studies. The model includes the following subsystems: a model of an asynchronous drive with vector control; a model of formation of the resistance moment at the bottom of the bit, taking into account the peculiarities of the interaction between the bit and the rock; a model of a multi-mass mechanical part that takes into account the deformation of the drill string; subsystem for the drilling rig energy-technological parameters formation. The integrated model makes it possible to calculate and evaluate the selected drilling modes, taking into account their electro-mechanical, energy and technological efficiency and the dynamics of drilling processes. The performed computer simulation of drilling modes confirmed the possibility of a stick-slip effect accompanied by high-frequency vibrations during bit stops, which may change the direction of rotation of the bit, its accelerated wear and unscrewing of the drilling tool. Long bit stops lead to a significant decrease in the average bit rotation speed, which can explain the decrease in the ROP and increase in energy consumption when drilling in the zone of unstable bit rotation. The model can be used as a base for further improvement of rotary drilling control systems.

How to cite: Ershov M.S., Komkov А.N., Feoktistov E.A. A complex model of a drilling rig rotor with adjustable electric drive // Journal of Mining Institute. 2023. Vol. 261 . p. 339-348. DOI: 10.31897/PMI.2023.20
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-10
  • Date published
    2022-11-03

Monitoring of grinding condition in drum mills based on resulting shaft torque

Article preview

Grinding is the most energy-intensive process among all stages of raw material preparation and determines the course of subsequent ore beneficiation stages. Level of electricity consumption is determined in accordance with load characteristics forming as a result of ore destruction in the mill. Mill drum speed is one of process variables due to which it is possible to control ore destruction mechanisms when choosing speed operation mode of adjustable electric mill drive. This study on increasing energy efficiency due to using mill electric drive is based on integrated modelling of process equipment – grinding process and electromechanic equipment – electric drive of grinding process. Evaluating load torque by means of its decomposition into a spectrum, mill condition is identified by changing signs of frequency components of torque spectrum; and when studying electromagnetic torque of electric drive, grinding process is monitored. Evaluation and selection of efficient operation mode of electric drive is based on the obtained spectrum of electromagnetic torque. Research results showed that with increasing mill drum speed – increasing impact energy, load torque values are comparable for the assigned simulation parameters. From the spectra obtained, it is possible to identify mill load condition – speed and fill level. This approach allows evaluating the impact of changes in process variables of grinding process on parameters of electromechanical system. Changing speed operation mode will increase grinding productivity by reducing the time of ore grinding and will not lead to growth of energy consumption. Integration of digital models of the technological process and automated electric drive system allows forming the basis for developing integrated methods of monitoring and evaluation of energy efficiency of the entire technological chain of ore beneficiation.

How to cite: Zhukovskiy Y.L., Korolev N.A., Malkova Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque // Journal of Mining Institute. 2022. Vol. 256 . p. 686-700. DOI: 10.31897/PMI.2022.91
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-18
  • Date accepted
    2020-06-16
  • Date published
    2021-04-26

Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement

Article preview

The article discusses the solution to the problem of underground railway transport slipping in dynamic modes, which occurs when there is a significant difference in the speeds of the driving and driven pairs of wheels. The state of the rail surfaces largely determines the coefficient of adhesion, therefore, using a mathematical model, the condition for the dependence of the magnitude of slipping and tractive effort is selected. For effective acceleration and deceleration of an electric locomotive, it is necessary to control the coefficient of adhesion at a certain level. A simulation model of rolling stock has been created, which for the first time takes into account a mechanical system with distributed parameters. In the structural diagram of the automatic control system of traction electric drives with frequency regulation, such factors as the volume of goods being moved, rolling friction, slope (rise) levels and the state of the rail track are taken into account. The simulation results show the features of the movement and stops of the freight train not only by the diagrams of speed and forces in the modes of acceleration-deceleration and uniform movement, but also the positions of the plungers and tractive forces on the couplings of the electric locomotive and all trolleys involved in the movement of goods. The practical application of the proposed method lies in the possibility of starting a heavily laden train from its place on the ascent section in conditions of insufficient adhesion coefficient with contaminated roads.

How to cite: Borisov S.V., Koltunova E.A., Kladiev S.N. Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement // Journal of Mining Institute. 2021. Vol. 247 . p. 114-121. DOI: 10.31897/PMI.2021.1.12
Electromechanics and mechanical engineering
  • Date submitted
    2020-07-22
  • Date accepted
    2020-11-12
  • Date published
    2020-12-29

Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system

Article preview

This paper considers the problem of electric drive of shearers simulation to assess the indicators of power supply system (PSS) energy efficiency in the context of the introduction of modern devices for controlling the flow of electricity and power. The block diagram of the shearer electric drive simulation model is presented. To take into account fluctuations in the level of consumption of active and reactive power, a model of the executive body of the shearer was used in the work, including a model of the moment of resistance on the auger when cutting. As a result, in the MATLAB Simulink environment, a simulation model of the electric drive of the UKD300 shearer was developed, suitable for assessing the energy efficiency of the electrical complex of mining areas and the feasibility of using modern devices for controlling the flow of electricity and power. As a result of the simulation, it was found that a significant irregularity in the graph of reactive power consumption, caused by repeated short-term operation, makes the use of capacitor units ineffective to compensate for reactive power.

How to cite: Voronin V.A., Nepsha F.S. Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system // Journal of Mining Institute. 2020. Vol. 246 . p. 633-639. DOI: 10.31897/PMI.2020.6.5
Electromechanics and mechanical engineering
  • Date submitted
    2020-06-22
  • Date accepted
    2020-07-24
  • Date published
    2020-06-30

Methods for assessing the technical compatibility of heterogeneous elements within a technical system

Article preview

The article provides methods for assessing the compatibility of elements in the design of complex technical systems. The compatibility of the elements is considered as the main indicator that determines the quality of systems including heterogeneous elements. The presented methods make it possible at the design stage to choose a technical solution that is most suitable for the project objectives, taking into account the operating conditions of the system. The methods make it possible to evaluate compatibility by a single and complex indicator. The choice of indicator depends on the purpose of the assessment. An example of methods implementation in the design of systems including an electric drive and pipeline shutoff valves is considered. It has been experimentally proved that in systems with low values ​​of the compatibility level, the actual power characteristics exceed the required values, which leads to additional voltages in the system elements and their breakdowns. The results of the assessment of typical systems allowed to identify the shortcomings of existing structures and propose alternative solutions to problems. The compatibility of elements within the framework of a technical system makes it possible to increase the functional efficiency of systems with minimum weight and size and power characteristics, to optimize the price-quality ratio, and to increase the competitiveness of the final product.

How to cite: Vasin S.A., Vasilev A.S., Plahotnikova E.V. Methods for assessing the technical compatibility of heterogeneous elements within a technical system // Journal of Mining Institute. 2020. Vol. 243 . p. 329-336. DOI: 10.31897/PMI.2020.3.329
Electromechanics and mechanical engineering
  • Date submitted
    2019-05-05
  • Date accepted
    2019-07-03
  • Date published
    2019-10-23

Scraper Face Conveyors Dynamic Load Control

Article preview

The task of controlling the dynamic loading of scraper face conveyors (SC) is considered and the unsatisfactory state of loading of mechanical and electrical components of the SC is recorded. The possibility of the appearance of a self-oscillatory nature of the entire system load due to the peculiarities of the movement of the traction chain along the lattice frame of the SC is indicated. The property of the system is noted – the cyclic nature of the loading of the circuit during movement, which causes energy exchange processes between the mechanical and electromotive components of the conveyor (when using the head and tail electric drives) through the common cable network of the power supply system of the SC. A high level of dynamic loading of the electromechanical system causes the problem of eliminating the self-oscillating operating mode of the SC that generates it which is proposed to be solved by changing the angular rotation speeds of the SC drive sprockets. Angular speeds can be changed by applying frequency control of asynchronous electric motors. The efficiency of setting the frequency of electric motor stator currents of the head and tail drives of the conveyor is established in proportion to the frequency of rotors rotation to eliminate self- oscillating modes of operation in the main operating mode. The possibility of reducing the starting shock values of the electromagnetic moments of electric motors is considered. The results of the calculation of the start-up and liquidation of the self-oscillating operating mode are presented on the example of the scraper face conveyor Anzhera-34. The results of calculations of the start-up modes and the main operational transportation of coal in an uncontrolled mode of operation and after the introduction of control are compared, based on which it is concluded that it is advisable to use active control of the dynamic loading ofSC.

How to cite: Eshchin E.K. Scraper Face Conveyors Dynamic Load Control // Journal of Mining Institute. 2019. Vol. 239 . p. 570-575. DOI: 10.31897/PMI.2019.5.570
Electromechanics and mechanical engineering
  • Date submitted
    2018-05-05
  • Date accepted
    2018-07-18
  • Date published
    2018-10-24

Calculations of dynamic operating modes of electric drives self-propelled mining machines

Article preview

The task of improving the calculations of the dynamic modes of electric drives of self-propelled mining machines, particulary, tunneling machines, is considered. Attention is drawn to the possibility to opearte in dynamic modes of a spatial change in the an asynchronous electric motor stator housing position, included in the electric drive, around the axis of its rotor due to the ultimate rigidity of the supports of the mining machine. In connection to this, it is possible to change the absolute angular velocity of rotation of the electromagnetic field of the stator of this electric motor. The necessity of introducing into existing mathematical models that determine the state and behavior of asynchronous electric motors, additional differential and algebraic relations for calculating the absolute speed of the electromagnetic field of the stator and the nature of the motion of the stator housing of the electric motor as part of the mining machine is noted. The results of calculations of the idle start mode of the electric motor of the executive body of the mining combine are shown, showing the difference in the nature of its electromagnetic moment variation, rotor rotation speed, as well as efforts in individual reducer elements of the driving body driving the stator body from similar calculation results without taking into account the stator body movement. The conclusion is made about the possible discrepancy between the calculated and experimental results in the study of the dynamic modes of self-propelled mining machines.

How to cite: Eshchin E.K. Calculations of dynamic operating modes of electric drives self-propelled mining machines // Journal of Mining Institute. 2018. Vol. 233 . p. 534-538. DOI: 10.31897/PMI.2018.5.534
Electromechanics and mechanical engineering
  • Date submitted
    2017-09-03
  • Date accepted
    2017-11-04
  • Date published
    2018-02-22

Development of sensorless vector control system for permanent magnet synchronous motor in Matlab Simulink

Article preview

In last 20 years segment of electric drives with permanent magnet synchronous motors has increased. This type of motors has better technical characteristics compared to induction motors, but has problems in actual implementation, one of which is the requirement of rotor position data. It is possible to implement with use of sensors or without them by means of motor state observer. The paper describes problems of sensorless vector control system for permanent magnet synchronous motors. The vector control system with state observer for permanent magnet synchronous motors is described. Synthesis of sliding mode observer for rotor speed and position is presented. The algorithm is implemented by development of model in Matlab Simulink environment with support by Texas Instruments processors support blocks. Experimental comparison of results of rotor angle state calculation and the data obtained by rotor position sensors was conducted. Research objective is a development of control algorithm, which has required precision for calculation of rotor start angle, high range of speed regulation and resistance to drift of motor parameters.

How to cite: Frolov V.Y., Zhiligotov R.I. Development of sensorless vector control system for permanent magnet synchronous motor in Matlab Simulink // Journal of Mining Institute. 2018. Vol. 229 . p. 92-97. DOI: 10.25515/PMI.2018.1.92
Electromechanics and mechanical engineering
  • Date submitted
    2017-09-14
  • Date accepted
    2017-11-23
  • Date published
    2018-02-22

Providing energy decoupling of electric drive and electric grids for industrial electrical installations

Article preview

Subjects of the research are industrial electric drives, witch maintain the operation of main actuating units of production machines and installations during the development of mineral resource deposits. The goal is to research the possibility to ensure the energy decoupling of industrial electric drives and electric grid by means of structural implementation of active rectifiers into frequency converters. The main purpose of energy decoupling is to eliminate the negative impact of low quality electric energy and changes in energy parameters on electric drive operation. In order to accomplish energy decoupling of electric drive with active rectifier, methods of mathematical and simulation modeling with mathematical application software package were used. The integrated simulation model with two electric drives, including active rectifier (energy decoupled electric drive) and diode rectifier (standard type electric drive), were created. Simulation model is provided with tools for oscillographic testing and analysis of the impact of power quality parameters on frequency converters and drive motors operation. The analysis of effectiveness of energy decoupling by means of active rectifier of frequency converter shows that drive motor completely retains the stability and controllability of rotation frequency and torque during the changes of power quality parameters in electric grid. The use of active rectifier allows to ensure the operation of electric drive in required mode in case of voltage decrease by 30 % with normative value of 5-10 %, i.e. energy decoupling provides high stability margin for voltage. Electric drive with active rectifier ensures energy decoupling in case of asymmetry of supply voltage. The control of mechanical variables of induction motor during offsets in amplitude and frequency in all phases of electric grid is ensured to be on required level.

How to cite: Vasilev B.Y., Shpenst V.A., Kalashnikov O.V., Ulyanov G.N. Providing energy decoupling of electric drive and electric grids for industrial electrical installations // Journal of Mining Institute. 2018. Vol. 229 . p. 41-49. DOI: 10.25515/PMI.2018.1.41
Electromechanics and mechanical engineering
  • Date submitted
    2015-08-18
  • Date accepted
    2015-10-06
  • Date published
    2016-04-22

Energy- efficient control of asynchronous motor drive with current refinement of the loss minimum on the basis of fuzzy logic

Article preview

Currently, asynchronous electric drive on the basis of semiconductor frequency converters is widespread because of the relative simplicity and reliability of the design, the use of digital control systems, providing the accuracy and flexibility of process control, which allows for a significant increase in product quality, reduction in energy consumption and improvement of the enterprise profitability. In spite of these advantages, the problem of ensuring high energy efficiency of the drive in wide range of its operational modes is still not solved in full scale. The paper is devoted to the reduction of losses in the asynchronous drive on the basis of en-ergy-saving control algorithms that aim to ensure the desired mode of the driven mechanism while minimizing losses in copper and steel of the motor. On the basis of the motor model, taking into account magnetic losses, dependences of losses in the copper and steel, as well as the total loss from the absolute slip have been derived for different operating points of the drive. The optimal values of the absolute slip for different speeds of the rotor have been obtained for use in the con-trollers ensuring operation of the drive at maximum efficiency, highest power factor and minimum of the stator current. For minimizing the losses in the drive when changing the motor parameters it has been offered the combined method based on the method of loss model and iterative method of searching the minimum of power consumption. The effectiveness of the proposed control system using fuzzy logic is confirmed by comparing the graphs of losses and efficiency, obtained at using a traditional control law and the optimal control law.

How to cite: Shonin O.B., Pronko V.S. Energy- efficient control of asynchronous motor drive with current refinement of the loss minimum on the basis of fuzzy logic // Journal of Mining Institute. 2016. Vol. 218 . p. 270-280.
Electromechanics and mechanical engineering
  • Date submitted
    2014-12-27
  • Date accepted
    2015-03-01
  • Date published
    2015-12-25

Minimization of energy losse when starting a variable frequency drive through application of a genetic algorithm of optimization

Article preview

In the face of energy lack and rising energy prices one of the priorities of current researches is to improve energy efficiency of electric drives, which are widely used in modern industrial plants. Existing methods of minimizing losses are mainly designed for stationary regimes. At the same time, the development of algorithms for reducing losses in transient and in particular starting conditions is given little attention. Due to the high complexity of the description of the multivari-ate dynamic processes determining the optimal control laws is advantageously to be carried out us-ing stochastic optimization methods. The work seeks to substantiate the optimal starting character-istics of an asynchronous drive based on a genetic algorithm. A feature of the proposed method of optimization is the use of multiple simulation experiments to find start-up characteristics which provide a minimum energy loss. Automation of the search is performed using the developed pro-gram, which includes a module of a genetic algorithm and a module for interfacing with the elec-tric model in the MATLAB/Simulink environment. The program allows choosing the parameters of the genetic algorithm along with controlling the process of optimization. Application of the proposed method allowed obtaining the optimal starting characteristics «voltage – frequency» in a tabular form with consequent linear approximation of the data. Increase in efficiency due to the proposed start up law has been confirmed by comparing the simulation re-sults under conditions of using a traditional linear characteristic and derived optimal law. The es-timation of losses reduction has been carried out at the drive load of different kind in a wide range of its variation.

How to cite: Shonin O.B., Pronko V.S. Minimization of energy losse when starting a variable frequency drive through application of a genetic algorithm of optimization // Journal of Mining Institute. 2015. Vol. 216 . p. 112-121.
Mining machine, electrical engineering and electromechanics
  • Date submitted
    2010-07-19
  • Date accepted
    2010-09-22
  • Date published
    2011-03-21

Simulation of swinging movement autoresonant electric drive with nonsymmetric excitation

Article preview

Mathematical and simulation models of drill bit oscillations. Method for calculating the model works elastic, electromagnetic and load torques has been developed. Simulation results of autoresonant regimes with asymmetric excitation oscillations of dynamically counter balanced drilling string on the cargo-carrying cable drill bit are represented.

How to cite: Fomenko A.N. Simulation of swinging movement autoresonant electric drive with nonsymmetric excitation // Journal of Mining Institute. 2011. Vol. 189 . p. 117-120.
Mining machine, electrical engineering and electromechanics
  • Date submitted
    2010-07-06
  • Date accepted
    2010-09-14
  • Date published
    2011-03-21

Electromechanical processes in electric drives of mountain equipment on the basis of the synchronous electric motor

Article preview

The description is given and the function chart of the bench installation is resulted, allowing to reproduce static and dynamic modes of adjustable electric drives of an alternating current. The modes considered during experimental researches of the electric drive on the basis of the synchronous electric motor, working in a mode of ventilniy electric motor are listed. Conclusions are drawn on character of course of dynamic modes, comparison of the electric drive to the synchronous electric motor and the electric drive of a direct current with the subordinated regulation is given.

How to cite: Sviridenko A.O. Electromechanical processes in electric drives of mountain equipment on the basis of the synchronous electric motor // Journal of Mining Institute. 2011. Vol. 189 . p. 103-106.
Mining machine, electrical engineering and electromechanics
  • Date submitted
    2010-07-20
  • Date accepted
    2010-09-14
  • Date published
    2011-03-21

The physical breadboard model of dynamically counterbalanced drilling string with swinging movement with the asynchronous electric drive powered by inverter laboratory experimental researche

Article preview

The laboratory experimental stand for research of the asynchronous resonant electric drive on a physical breadboard model of dynamically counterbalanced drilling string is developed. The asynchronous electric drive with swinging movement the autoresonant oscillation mode is realized.

How to cite: Ivanik V.V. The physical breadboard model of dynamically counterbalanced drilling string with swinging movement with the asynchronous electric drive powered by inverter laboratory experimental researche // Journal of Mining Institute. 2011. Vol. 189 . p. 99-102.
Mining machine, electrical engineering and electromechanics
  • Date submitted
    2010-07-21
  • Date accepted
    2010-09-28
  • Date published
    2011-03-21

Swinging movement autoresonant electric drive with nonsymmetric excitation of dynamically counter-balanced drilling string on carrying cable

Article preview

Considered nonsymmetric mode of drill bit oscillations when forming a unipolar electromagnetic torque on each cycle oscillations of dynamically balanced drill . Developed a method for estimating speed of rotation drill around its axis when working in the nonsymmetric mode at first approximation .

How to cite: Zagrivnyi E.A., Fomenko A.N. Swinging movement autoresonant electric drive with nonsymmetric excitation of dynamically counter-balanced drilling string on carrying cable // Journal of Mining Institute. 2011. Vol. 189 . p. 95-98.
Mining machine, electrical engineering and electromechanics
  • Date submitted
    2010-07-26
  • Date accepted
    2010-09-14
  • Date published
    2011-03-21

Algorithm of control of the electric drive with ventilniy electric motor and the converter of frequency with the active rectifier

Article preview

Advantages of application of the active rectifier as a part of converters of frequency for powerful drives with ventilniy electric motors are considered. The mathematical description of the processes proceeding in a power part of the active rectifier is given. The scheme of a drive with a vector control system with the gage of position of a rotor and the active rectifier is presented, schedules of power consumption and a current by a drive with the active rectifier are resulted.

How to cite: Emelyanov A.P., Sviridenko A.O. Algorithm of control of the electric drive with ventilniy electric motor and the converter of frequency with the active rectifier // Journal of Mining Institute. 2011. Vol. 189 . p. 87-90.
Geotechnical engineering, powerengineering and automation
  • Date submitted
    2009-08-16
  • Date accepted
    2009-10-16
  • Date published
    2010-02-01

Experimental determination of vibration jaw crusher perfomance and characteristic of the crusher two-motor drive in no-load and nominal mode of operation

Article preview

The paper is devoted to the experimental study of jaw crusher characteristics under condition that nonidentity of subsystems electro-mechanical parameters causes the distortion of the nominal mode of the jaw crusher operation. Experimental data obtained have confirmed basic statements of a self-synchronization theory. The initial phase shift of jaws oscillations is shown to result in a substantial decrease in the crusher productivity and a significant increase in the specific power consumption.

How to cite: Tyagushev S.Y., Shonin O.B. Experimental determination of vibration jaw crusher perfomance and characteristic of the crusher two-motor drive in no-load and nominal mode of operation // Journal of Mining Institute. 2010. Vol. 186 . p. 161-164.
Geotechnical engineering, powerengineering and automation
  • Date submitted
    2009-08-17
  • Date accepted
    2009-10-25
  • Date published
    2010-02-01

Compensation of supply station reactive power by means of the mine main fan electric drive

Article preview

On the basis of comparative analysis of the mine main fan electric drive input voltage-current characteristics, a frequency-variable drive with pulse width modulation (PWM) rectifier and PWM inverter is shown to be the most competitive one because of its capability to independently implement the substation power factor correction and the mine air flow energy-saving control.

How to cite: Sobolev V.V., Shonin O.B. Compensation of supply station reactive power by means of the mine main fan electric drive // Journal of Mining Institute. 2010. Vol. 186 . p. 136-139.
Geotechnical engineering, powerengineering and automation
  • Date submitted
    2009-08-05
  • Date accepted
    2009-10-21
  • Date published
    2010-02-01

The autoresonant electric drive of the swinging movement pendular vibration exciter vibration jaw crushers

Article preview

To use of the autoresonant electric drive of swinging movement for creation of an oscillative motion of crushing jaws of vibrating jaw crushers it is offered in this article. The control system of the electric drive is developed. The results of imitating and physical modelling of the autoresonant electric drive are presented.

How to cite: Gavrilov Y.A., Zagrivnyi E.A. The autoresonant electric drive of the swinging movement pendular vibration exciter vibration jaw crushers // Journal of Mining Institute. 2010. Vol. 186 . p. 116-119.
Mining
  • Date submitted
    1951-07-27
  • Date accepted
    1951-09-05
  • Date published
    1952-03-26

On the issue of choosing the power and type of the main drive of electric multi-bucket dredges

Article preview

Определение мощности главного привода многочерпаковых элек­трических драг, т. е. привода их черпакового устройства, встречает следующие затруднения. 1. Недостаточная изученность физических свойств грунтов дра­гируемых россыпей приводит к тому, что усилие резания грунтов черпаками с необходимой степенью точности не может быть опреде­лено. Грунты, в основном, не являются однородными. Как следует из классификации грунтов для дражных работ (табл. 1), установленной в 1937 г., грунты могут содержать торф, пески, глины, щебень, песчаник, валуны, изверженные породы и другие компоненты, причем процентный состав их колеблется в широких пределах. Поэтому для подобных грунтов пользоваться физическими константами, по­лученными при испытании однородных грунтов, будет не совсем правильным. 2. При работе драги могут встречаться различные препятствия (крупные валуны, крепежный лес старых выработок и др.), которые вызывают перегрузки двигателя черпакового устройства. Длительность и величина перегрузок теоретически не могут быть учтены. Выявление характера подобных перегрузок и величины усилия резания может быть осуществлено с помощью нагрузочных диаграмм, снятых самопишущими электрическими измерительными приборами. Выбор типа привода черпакового устройства представляет меньшие затруднения.

How to cite: Shklyarskii L.F. On the issue of choosing the power and type of the main drive of electric multi-bucket dredges // Journal of Mining Institute. 1952. Vol. 26 № 1. p. 29-42.
Mining
  • Date submitted
    1948-07-25
  • Date accepted
    1948-09-22
  • Date published
    1949-11-04

On the issue of the operating mode of the electric drive of scraper winches

Article preview

This article is devoted to the issue of analyzing the operating mode of scraper winches. As is known, scraper installations have recently found wide application in various industries. However, despite this, there are no studies of the operating mode of their electric drive and a more substantiated choice of scraper winch drive power in the literature. The analysis of the operating mode of scraper winches is carried out mainly on the basis of power and current diagrams taken by the author under production conditions in the Cheremkhovo coal basin in 1943 (Figs. 1, 2, 3 and 4), as well as on the basis of similar curves given in the existing literature (Figs. 5 and 6). It should be noted that although the diagrams in Figs. 1, 2, 3 and 4 were taken using conventional, non-self-recording measuring electrical devices, the general nature of the scraper winch drive load can be traced using these curves. On the other hand, the diagrams shown in Figs. 5 and 6 were taken with the help of recording measuring instruments and somewhat complicate the analysis, since numerous peaks caused by all sorts of random phenomena sometimes make it difficult to distinguish between idle running and working running of the scraper. Thus, it can be considered that both types of diagrams complement each other when dialysis of the operating mode of the scraper winch drive.

How to cite: Shklyarskii L. On the issue of the operating mode of the electric drive of scraper winches // Journal of Mining Institute. 1949. Vol. 23 . p. 39-53.