Providing energy decoupling of electric drive and electric grids for industrial electrical installations
- 1 — Saint-Petersburg Mining University
- 2 — Saint-Petersburg Mining University
- 3 — Saint-Petersburg Mining University
- 4 — Lianozovo Electromechanical Plant
Abstract
Subjects of the research are industrial electric drives, witch maintain the operation of main actuating units of production machines and installations during the development of mineral resource deposits. The goal is to research the possibility to ensure the energy decoupling of industrial electric drives and electric grid by means of structural implementation of active rectifiers into frequency converters. The main purpose of energy decoupling is to eliminate the negative impact of low quality electric energy and changes in energy parameters on electric drive operation. In order to accomplish energy decoupling of electric drive with active rectifier, methods of mathematical and simulation modeling with mathematical application software package were used. The integrated simulation model with two electric drives, including active rectifier (energy decoupled electric drive) and diode rectifier (standard type electric drive), were created. Simulation model is provided with tools for oscillographic testing and analysis of the impact of power quality parameters on frequency converters and drive motors operation. The analysis of effectiveness of energy decoupling by means of active rectifier of frequency converter shows that drive motor completely retains the stability and controllability of rotation frequency and torque during the changes of power quality parameters in electric grid. The use of active rectifier allows to ensure the operation of electric drive in required mode in case of voltage decrease by 30 % with normative value of 5-10 %, i.e. energy decoupling provides high stability margin for voltage. Electric drive with active rectifier ensures energy decoupling in case of asymmetry of supply voltage. The control of mechanical variables of induction motor during offsets in amplitude and frequency in all phases of electric grid is ensured to be on required level.
References
- Васильев Б.Ю. Электропривод. Энергетика электропривода. М.: СОЛОН-Пресс, 2015. 268 с.
- Васильев Б.Ю. Энергосбережение и энергоэффективность в промышленности / Б.Ю.Васильев, Ю.Л.Жуковский // СПб: Энергетика, 2016. 214 с.
- Пустоветов М.Ю. Помехи в частотно-регулируемом электроприводе переменного тока / М.Ю.Пустоветов, Л.И.Вербицкий // Труды всероссийской научно-практической конференции «Транспорт-2012»; Ростовский государственный университет путей сообщения. Ростов-на-Дону, 2012. С. 414-416.
- Akagi H. A Passive EMI Filter for Eliminating Both Bearing Current and Ground Leakage Current From an Inverter-Driven Motor / H.Akagi, S.Tamuramore // IEEE Transactions on Power Electronics. 2006. Vol. 21. № 5. Р. 1459-1469. DOI: 10.1109/TPIL.2006.880.239
- A complete excitation-shaft-bearing model to overcome the shaft induced voltage and bearing current / Reza Kazemi Golkhandan, Mohammad Tavakoli Bina, Masoud Aliakbar Golkar, Mohsen Jokar // Power Electronics. Drive Systems and Technologies Conference. 2011. P. 362-366. DOI: 10.1109/PEDSTC.2011.5742447
- Chen S. Source of induction motor bearing currents caused by PWM inverters / S.Chen, T.A.Lipo, D.Fitzgerald // IEEE Transactions on Energy Conversion. 1996. Vol. 11. № 1. Р. 25-32. DOI: 10.1109/60.4865572
- Kalaiselvi J. Bearing currents and shaft voltage reduction in dual-inverter-fed open-end winding induction motor with reduced CMV PWM methods / J.Kalaiselvi, S.Srinivas // IEEE Transactions on Industrial Electronics. 2014. Vol. 62. № 1. Р. 144-152. DOI: 10.1109/TIE.2014.2336614
- Link P.J. Minimizing electric bearing currents in ASD systems // IEEE Industry Applications Magazine. 1999. Vol. 5. № 4. Р. 55-66. DOI: 10.1109/2943.771367
- Muetze Annette. Practical Rules for Assessment of Inverter-Induced Bearing Currents in Inverter-Fed AC Motors up to 500 kW / Annette Muetze, Andreas Binder // IEEE Transactions on Industrial Electronics. 1999. Vol. 54. № 3. Р. 1614-1622. DOI: 10.1109/TIE.2007.894698
- Mitigation of bearing current and shaft voltage using five level inverter in three phase induction motor drive with SPWM technique / Rajendra K. Dhatrak, Rajesh K. Nema, Soubhagya Kumar Dash, Dinesh M. Deshpande // International Conference Industrial Instrumentation and Control. 2015. Р. 1184-1189. DOI: 10.1109/IТC.2015.7150927
- Research of bearing voltage and bearing current in induction motor drive system / Zhuxia Fan, Yongjian Zhi, Bingquan Zhu, Guanglin Yan, Yu Shi // Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Shenzhen, China. 2016. 1195. Р. 1195-1198.
- Research on electrostatic shield for discharge bearing currents suppression in variable-frequency motors / Jing Quan, Baodong Bai, Yu Wang, Weifeng Liu // International Conference on Electrical Machines and Systems. 2014. Р. 139-143. DOI: 10.1109/ICEMS.2014.7013453
- Reddy Sharana. Simulation and analysis of common mode voltage, bearing voltage and bearing current in two-level and three-level PWM inverter fed induction motor drive with long cable / Sharana Reddy, B.Basavaraja // International Conference on power and advanced control engineering. Bangalore. 2015. Р. 221-226. DOI: 10.1109/ICPACE.2015.7274949
- Schiferl R.F. Bearing current remediation options / R.F.Schiferl, M.J.Melfi // IEEE Industry Applications Magazine. 2004. Vol. 10. № 4. Р. 40-50. DOI: 10.1109/MIA.2004.1311162