-
Date submitted2022-11-21
-
Date accepted2024-05-02
-
Date published2024-08-26
M1 formation tectono-structural features and gas-oil potential within Archinskaya area Paleozoic basement (Western Siberia)
- Authors:
- Vladimir B. Belozerov
- Mikhail O. Korovin
Western Siberian Plate basement oil and gas potential evaluation largely depends on structural and stratigraphic complex architecture representation. New modern procedures for seismic data processing, detailed Paleozoic deposits stratigraphic studies and expanded geophysical well logging significantly change the representation of the basement rocks fold-block structure and previously developed hydrocarbon reservoirs models. Detailed studies conducted within the Archinskii uplift showed that Paleozoic sediments form a contrasting folded structure complicated by block tectonics. The significant block displacements amplitude determines the lithological and stratigraphic basement rocks erosional-tectonic surface, while the identified stratigraphic blocks control the oil productivity distribution within the Archinskaya area. The filtration-capacity heterogeneity folded structure of the Paleozoic sediments is reflected in the distribution of hydrocarbon saturation in the well section, forming independent gas, oil, and oil-water zones for the development process. The relationship between anticlinal structural forms of basement rocks to lowered, and synclinal to elevated blocks, determines the necessity to conduct exploration prospecting within younger stratigraphic blocks when assessing the deep Paleozoic oil and gas potential.
-
Date submitted2024-04-09
-
Date accepted2024-06-03
-
Date published2024-07-04
Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies
Nature-like technologies are being introduced into many human activities including mining wastewater treatment. This work is based on long-term studies of the Sibay copper-zinc-pyrite deposit development. It is dedicated to assessment of geochemical barriers effectiveness in Cu, Zn, Cd removal from water of the Karagayly River (receiving quarry and dump drainage water). The research is based on the elements’ content and forms in water and bottom sediments, pH values etc. Four types of hydrogeochemical environment (formed due to changes in the water use over the past 20 years) were distinguished using discriminant analysis. The mechanisms of barriers formation and destruction were described. Statistical modeling of the metals’ precipitation was performed by multivariate regression analysis. Cu is adsorbed by recently formed Fe hydroxides, and, to a lesser extent, precipitates with sulfates as water pH increases. Antagonism to Mn hydroxides has been demonstrated, due to different physicochemical conditions for their precipitation. Zn enters solid phase mainly with sulfates, this element also forms its own mineral phases. The second mechanism is adsorption by recently formed Mn hydroxides, which corresponds to the idea of similar conditions for the precipitation of metal hydroxides. Cd behavior reflects conditions intermediate between these of Cu and Zn. Contribution of both mechanisms (related to Fe hydroxides and aqueous sulfates) is equal. Antagonism to Mn is absent. According to the assessment results using of nature-like technologies in situ in watercourses, canals and other water drainage systems is promising. Developed statistical models can be used for needs of experimental studies and artificial geochemical barriers engineering.
-
Date submitted2022-04-08
-
Date accepted2023-03-02
-
Date published2023-04-25
Geochemical properties and transformation of the microelement composition of soils during the development of primary diamond deposits in Yakutia
Extraction of diamonds from primary deposits in Siberia is associated with the development of kimberlite pipes in challenging environmental conditions, accompanied by a complex impact on the environment. The article presents the results of monitoring the soil cover of the Nakyn kimberlite field in the Yakutia diamond province, which is affected by the facilities of the Nyurba Mining and Processing Division. Development of primary diamond deposits has a large-scale impact on the subsoil, topography, and soil cover: creation of the world's largest quarries, formation of dumps more than 100 m high, arrangement of extensive tailings, formation of solid and liquid industrial wastes of various chemical composition. The research is aimed at studying the spatial and temporal patterns of the technogenic impact on the soil cover, identifying the nature and level of transformation of the microelement composition of soils based on the analysis of the intra-profile and lateral distribution of mobile forms of trace elements. The study targets in 2007-2018 were zonal types of permafrost soils of northern taiga landscapes, cryozems, occupying 84 % of the total study area, which are characterized by biogenic accumulation of mobile forms of Ni, Mn, and Cd in the upper AO, A cr horizons, and Cr, Ni, Co, Mn, Cu in the suprapermafrost CR horizon. We found out that the contamination of the soil cover of the industrial site at the Nyurba Mining and Processing Division is of a multielement nature with local highly to very highly contaminated areas. Over a ten-year observation period, areas of stable soil contamination are formed, where the main pollutants are mobile forms of Mn, Zn, Ni. We suggest that against the background of a natural geochemical anomaly associated with trap and kimberlite magmatism, technogenic anomalies are formed in the surface horizons of soils. They are spatially linked to technogenically transformed landscapes. One of the sources of pollutants is the dispersion of the solid phase of dust emissions in the direction of the prevailing winds, which leads to the formation of soils with abnormally high contents of mobile forms of Mn, Zn, Ni.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-11-03
In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions
In-situ leaching of molybdenum and uranium is becoming an increasingly common process. The features of the material composition of ores, leading to a decrease in their filtration properties, were considered. Activation leaching with leaching solutions that have undergone electrophotochemical activation before contact with the ore mass were studied. Activation preparation of leaching solutions promotes the synthesis of clustered water molecules with collectivized protons and hydroxyl ions, as well as active forms of oxygen and hydrogen. Cell leaching of molybdenum from mature tailings of the Shakhtaminsk deposit was studied experimentally. After pre-oxidation with an active carbonate solution, a model borehole leaching was carried out with a chloride-hypochlorite solution. Molybdenum extraction on resin a was 85 % in 30 days. Experiments on the percolation leaching of uranium from the ores of the Uchkuduk and Sugraly deposits confirmed the potential possibility of a significant increase in the extraction of uranium by electrophotoactivated percarbonate solutions relative to aqueous solutions of sodium and ammonium carbonate. When leaching with carbonate solutions without an additional oxidizing agent, the extraction of uranium from the Sugraly deposit ore sample was 52 and 59 % (sodium carbonate and ammonium carbonate). The use of hydrogen peroxide as an oxidizing agent made it possible to achieve 87-88 % extraction into pregnant solutions in 21 days without pre-oxidation. The performed studies confirm the processing capability of extracting uranium and molybdenum by percolation leaching in columns and borehole leaching.
-
Date submitted2021-11-17
-
Date accepted2022-04-06
-
Date published2022-11-10
Method for predicting the stress state of the lining of underground structures of quasi-rectangular and arched forms
- Authors:
- Maksim A. Karasev
- Tien Tai Nguyen
A method for predicting the stress-strain state of the lining of underground structures, the shape of the cross-section of which is different from the circular outline, is considered. The main task of the study is to develop a methodology for assessing the influence of the parameters of the cross-section shape of underground structures on the stress state of the lining. To solve this problem, a method for calculating the stress state of the lining for arched tunnels with a reverse arch and quasi-rectangular forms is substantiated and developed. The methodology was tested, which showed that the accuracy of the prediction of the stress state of the lining is sufficient to perform practical calculations. An algorithm for multivariate analysis of the influence of the cross-sectional shape of underground structures of arched and quasi-rectangular shapes on the stress state of the lining is proposed. Parametric calculations were performed using the developed algorithm and regularities of the formation of the stress state of the lining of underground structures for various engineering and geological conditions, as well as the initial stress state field, were obtained. A quantitative assessment of the influence of geometric parameters of tunnels on their stress-strain state was performed.
-
Date submitted2021-09-16
-
Date accepted2022-02-24
-
Date published2022-04-29
Production of microfluidic chips from polydimethylsiloxane with a milled channeled surface for modeling oil recovery during porous rock waterflooding
Microfluidic chips with porous structures are used to study the flow of oil-containing emulsion in the rock. Such chips can be made from polydimethylsiloxane by casting into a master mold. At the initial stages of research, fast and cheap prototyping of a large number of different master molds is often required. It is proposed to use milling to make a channeled surface on a polymethyl methacrylate plate, from which a negative image should be taken, which is the master mold for casting positive polydimethylsiloxane chips in it. Several epoxy compositions have been tested to make this master mold. The main requirement in the search for the material was the exact replication of the geometry and sufficiently low adhesion to polymethyl methacrylate and polydimethylsiloxane for removing the product with minimal damage to the mold. It was possible to make master molds from all the materials used, but with defects and various degrees of damage. One of the epoxy compositions was found suitable for making a master mold with many elements simulating the grains of a porous medium (height to width ratio 2:3). The developed method makes it possible to use polydimethylsiloxane for prototyping chips simulating the porous structure of an oil rock.
-
Date submitted2020-11-20
-
Date accepted2021-03-30
-
Date published2021-06-24
Regularities of changing the dimensions of the main bore of the cylinder of TMZ-450D diesel engine during the technological process
The article deals with the problems arising during the mechanical and thermal treatment of the TMZ-450D diesel engine cylinder, which is the base part of the engines of small-sized generators and compressors, which are widely used for mobile units in the oil and gas and mining industries. It was found that the metal in the casting has a non-uniform structure, the density of which ranges from 6.75 to 7.25 g/cm 3 . Redistribution of dislocations and residual stresses in the casting leads to significant changes in the size and shape of the main bore. In addition to the successive changes in size specified by the technology due to the removal of the designated allowance, the dimensions and shape change arbitrarily, uncontrollably in the course of the technological process. It is shown that artificial aging by a thermal method does not provide the desired dimensional stability; therefore, it is proposed to supplement it with natural aging after rough boring for six months. It was revealed that the use of morally and physically outdated equipment makes it necessary to increase the number of finishing operations of honing and, accordingly, to increase the labor intensity of cylinder manufacturing. The use of a two-position boring machine is substantiated, on which the transitions of semi-finishing and fine boring are combined. This completely eliminates the copying of errors that arose when changing the base on previous operations. The use of a two-position modular boring machine ARS-4/Ts of increased accuracy and rigidity significantly increases the accuracy of the bore hole, which makes it possible to reduce the number of honing operations. A variant of the technological process of mechanical and heat treatment is proposed, including natural aging, the use of double boring on a modular boring machine, which will reduce the number of honing operations to one, including rough and finish transitions.
-
Date submitted2018-06-27
-
Date accepted2018-09-18
-
Date published2018-12-21
Migration forms of chemical elements in the intrusive rocks of the Eastern Desert (El Sela area, Egypt)
- Authors:
- M. M. Ghoneim
- E. G. Panova
In the Egypt's Eastern Desert intrusive rocks with U-REE mineralization (two-mica granites, microgranites, dolerites, and bostonites) are developed. We estimated the content of chemical elements in reference samples of intrusive rocks and also in their water-soluble (colloid-salt) fraction. This fraction is water-extracted from the rock under certain conditions. The rock sample and its colloid-salt fraction are analyzed using ICP-MS. The chemical characteristic of the extracted fraction reflects the mobile migrating part of the chemical elements in the composition of the rocks. Comparison of the obtained data allows us to estimate the share of migrating and weakly migrating elements.
-
Date submitted2017-11-09
-
Date accepted2017-12-28
-
Date published2018-04-24
Chemical weathering of lower paleozoic black shales of south Sweden
- Authors:
- D. O. Voronin
- E. G. Panova
Lower Paleozoic black shales are widespread in Sweden and form part of the Baltic paleobasin, which deposits are also known in Estonia and the Leningrad Oblast of Russia. These rocks are enriched in a carbon substance and characterized by the significant content of uranium, vanadium, molybdenum, copper, nickel, cobalt, zinc, and lead. Black shales contain high levels of Sr – 968; Ba – 337; U – 229; V – 509; Mo – 165; Zn – 411; Ni – 214; Cu – 112 (ppm) in secondary minerals composition formed on their surface. Retrograde diagenetic conditions facilitate the black shales chemical weathering. Elements of the first (U), second (Mo, Sr, Zn), and third (V) hazard classes are washed out of black shales and secondary minerals and can further enter biological cycles.
-
Date submitted2009-08-26
-
Date accepted2009-10-27
-
Date published2010-02-01
Scheelites of Gavrilovskoe deposit (first find)
- Authors:
- A. E. Melnik
The Gavrilovskoe deposit (deposit of building stone) is situated in Vyborg district, Leningrad region. There was found scheelite (CaWO 4 ) in the «Northern» quarry at the Gavrilovskoe deposit in 2008. This mineral was identified exactly in the Saint Petersburg State Mining Institute (Technical University) with Raman Spectrometer Renishaw InVia Reflex. It was for the first time that scheelite was found at this place. There was researched a form of one scheelite crystal. The simple forms of this scheelite crystal were detected. It is very interesting to compare simple forms of scheelite from the Gavrilovskoe deposit to different crystals of this mineral, described in any science literature.
-
Date submitted2008-10-22
-
Date accepted2008-12-14
-
Date published2009-12-11
Peculiarities of structure and comparative analysis of oil-and-gas basins in the Pacific segment of lithosphere
- Authors:
- V. B. Archegov
Comparative analysis was carried out for oil-and-gas-bearing basins of young and oldland platforms of the Pacific segment. Previously the same kind of analysis had been realized for the Atlantic segment of lithosphere. Obtained results confirm the unique geological structure and oil-and-gas capacity of Siberian platform, by these features it differs from all other cratons in the whole world.