-
Date submitted2024-03-28
-
Date accepted2024-06-03
-
Date published2024-07-04
Assessing the effectiveness of sewage sludge in the reclamation of disturbed areas in the Kola subarctic zone (a case study of a sand quarry)
An assessment was made of the effectiveness of reclamation using sewage sludge for the accelerated formation of a stable erosion-proof vegetation cover on the unproductive anthropogenic soil of a sand quarry in the context of the Kola North. The experiment, launched in 2017, included three treatments: control – no treatment, experiment 1 – fragmentary (50 %) application of sewage sludge, experiment 2 – continuous application. In the sixth growing season, anthropogenic soil samples were examined, and measurements of CO2 emissions were carried out. It was shown that the application of sewage sludge had a positive effect on the physicochemical and agrochemical properties of the soils: in situ pH and density decreased, hygroscopicity increased, available phosphorus and potassium increased. Significant differences (p < 0.05) were found between CO2 emissions in the control and experimental treatments. The content of organic carbon in the control treatment was lower than in the experimental ones; under fragmentary application of sewage sludge, it was three times lower, and under continuous application, it was nine times lower. Significant (p < 0.05) differences in the content of carbon and nitrogen in cold and hot water extracts between control and treatment samples were found under continuous application of sewage sludge. At the same time, by calculating the C/N ratio, a very low level of nitrogen was found in the humus. The main factors behind the variability of the estimated parameters were identified – the treatment itself and the method of its application, the contribution of the treatment alone was 60 %, the contribution of the application method was 14 %. Taking into account the economic factors, fragmentary application of sewage sludge onto the anthropogenic sand quarry soil is recommended to support the establishment of a stable erosion-proof phytocenosis.
-
Date submitted2024-04-09
-
Date accepted2024-06-03
-
Date published2024-07-04
Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies
Nature-like technologies are being introduced into many human activities including mining wastewater treatment. This work is based on long-term studies of the Sibay copper-zinc-pyrite deposit development. It is dedicated to assessment of geochemical barriers effectiveness in Cu, Zn, Cd removal from water of the Karagayly River (receiving quarry and dump drainage water). The research is based on the elements’ content and forms in water and bottom sediments, pH values etc. Four types of hydrogeochemical environment (formed due to changes in the water use over the past 20 years) were distinguished using discriminant analysis. The mechanisms of barriers formation and destruction were described. Statistical modeling of the metals’ precipitation was performed by multivariate regression analysis. Cu is adsorbed by recently formed Fe hydroxides, and, to a lesser extent, precipitates with sulfates as water pH increases. Antagonism to Mn hydroxides has been demonstrated, due to different physicochemical conditions for their precipitation. Zn enters solid phase mainly with sulfates, this element also forms its own mineral phases. The second mechanism is adsorption by recently formed Mn hydroxides, which corresponds to the idea of similar conditions for the precipitation of metal hydroxides. Cd behavior reflects conditions intermediate between these of Cu and Zn. Contribution of both mechanisms (related to Fe hydroxides and aqueous sulfates) is equal. Antagonism to Mn is absent. According to the assessment results using of nature-like technologies in situ in watercourses, canals and other water drainage systems is promising. Developed statistical models can be used for needs of experimental studies and artificial geochemical barriers engineering.
-
Date submitted2021-07-05
-
Date accepted2022-07-21
-
Date published2022-11-10
Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study
The rock fragmentation reflects the degree of control of blasting. Despite the accuracy of screening analysis to determine the size distribution of blasted rocks, this technique remains complex and long because of the large volume of blasted rocks. The digital image processing method can overcome these constraints of accuracy and speed. Our method uses the empirical model of KuzRam and numerical method (Digital image processing) through two image processing software’s (WipFrag and Split-Desktop) to analyze the particle size distribution of rocks fragmented by explosives in Jebel Medjounes limestone quarry. The digital image processing is based on the photography of the pile of blasted rock analyzed using image processing techniques. The objective of this work is to evaluate and compare the results obtained for each blast from the two methods and to discuss the similarities and differences among them. Three different blasts with the same design were analyzed through the two methods. The result of the KuzRam model gave idealistic results due to the heterogeneity of the structure of the rocks; although, this model can be used for an initial evaluation of blast design. For better efficiency of the explosion, we proposed a new fragmentation indicator factor in order to compare the fragment produced to the estimated ideal size obtained from the KuzRam model by incorporating the blast design parameters and the rock factor. Both image processing gives close results with more accuracy for the Split-Desktop software. Our method can improve the efficiency and reduce crushing costs of the studied career.
-
Date submitted2019-06-29
-
Date accepted2019-08-25
-
Date published2019-12-24
New technical solutions for ventilation in deep quarries
- Authors:
- S. G. Shakhrai
- G. S. Kurchin
- A. G. Sorokin
The paper discusses the issues of ventilating in deep quarries caused by the intensification of blasting operations at great depths, the increased distance of ore truck transportation to the daylight area, constant change in the geometrical parameters of the quarry, its microrelief and direction of mining, and increased isolation of the mined space from the environment. We provide a brief analysis of the current tools for forced airflow in deep quarries, which showed that the use of forced ventilation is often challenging since it leads to high energy consumption, high level of noise exceeding the permissible parameters, and high speeds of forced air flows may blow the dust off the quarry surfaces. The article presents methods and tools developed at the Siberian Federal University for intensifying the natural airflow in deep quarries by changing the air density at the entrance and exit points of the pit, as well as heating the shady areas using mirrors and solar energy, which do not interfere with mining and blasting operations.
-
Date submitted2015-10-17
-
Date accepted2015-12-19
-
Date published2016-08-22
Improving the retention of minerals in the course of separating monolith from bedrock with the use of gas generator cartridges
- Authors:
- G. P. Paramonov
- V. N. Kovalevskii
- Peter Mozer
Results are presented on the effect of firing rate on pressure pulse in charge camera and fracture stress during spalling. Results are presented of comparative calculations using the equations of autocatalytic reactions of firing rates and escape of reaction products for the system of sodium chlorate - polythene (propylene) in pipe shape. Dependences are obtained of firing rate on concentration of gas generating mixture, its density, components size distribution and cartridge case size. Experimental and computational data were used to consider the conditions of firing turning into explosion for compositions based on sodium chlorate and hydrocarbons in layered and powdered systems. The relation is retrieved between the technological parameters of mining activities (blast hole to blast hole distance, blast hole diameter, depth of cartridge placement) and specific cartridge consumption along the spalling line with gas generators going off.
-
Date submitted2010-07-21
-
Date accepted2010-09-08
-
Date published2011-03-21
Calculation methodology of physical parameters of the artificial pillar barrier
- Authors:
- M. N. Adreev
The article is devoted to the calculation methodology of physical parameters of the artificial barrier pillar needed when developing underquarry deposits of kimberlitic pipes in difficult hydrogeological conditions.
-
Date submitted2010-07-15
-
Date accepted2010-09-26
-
Date published2011-03-21
Development of the stowing material and testing of its mechanical properties
- Authors:
- M. N. Andreev
- E. I. Boguslavskiy
Article is in touch with analysis of backfill materials applied on diamond mines, description of research of its mechanical properties to create the optimal compound in conditions of Yakutian kimberlitic tubes.