-
Date submitted2024-05-02
-
Date accepted2024-06-03
-
Date published2024-07-04
Iron ore tailings as a raw material for Fe-Al coagulant production
The paper presents the results of experimental research into the recovery of Fe-Al coagulant from iron ore tailings (IOTs). The variables investigated in the laboratory tests included sulphuric acid concentration, temperature, leaching time, solid/liquid phase ratio (S:L) and the presence of stirring. The experiment determined the composition of the coagulant and the solid residue after leaching. The maximum iron content in the solution after leaching was obtained using 40 % H2SO4 at a temperature of 100 °C (or with stirring at 75 °C) and a contact time of 60 minutes. In this case, the iron yield was at the level of 25 % of the total content in the iron ore tailings. Chemical analysis of the solution obtained after leaching showed Fe and Al sulphate contents of 11 and 2 % respectively. In the next step, the efficiency of the coagulant was evaluated on model solutions of colour. The experimental results showed that the coagulant obtained from the iron ore tailings can be used for wastewater treatment in a wide pH range from 4 to 12 pH units. The solid residue after leaching is a fine-grained powder rich in silica, which can potentially be used as an artificial raw material in the construction industry. The research carried out in this thesis has shown that the extraction of coagulants from iron ore tailings can be considered as a way to extend the production chain of iron ore mining and to minimise the amount of tailings to be stored in tailing ponds. The technical solution presented in this work allows to comprehensively solve the problem of environmental protection by creating new target products for wastewater treatment from IOTs.
-
Date submitted2024-04-22
-
Date accepted2024-06-13
-
Date published2024-07-04
Comprehensive utilization of urban wastewater sludge with production of technogenic soil
The article presents the analysis of the existing approach to wastewater sludge treatment and justifies the selection of the most promising management technology that allows maximum use of wastewater sludge resource po-tential. To obtain a useful product (biocompost) suitable for use as part of technogenic soil, experimental studies of aerobic stabilization of organic matter of dehydrated urban wastewater sludge with the addition of other waste by using passive composting technology were carried out. The technology is included in the list of best available technologies (BAT). The selection of the most optimal components for the mixture was based on the results of determining the C and N content, humidity and pH of the components used that ensured the composting of organic waste. The results of laboratory studies of the obtained biocompost according to the main agrochemical and sanitary-epidemiological indicators are presented. Testing was carried out according to the criterion of toxicity of the biocompost’s aqueous extract. The assessment of the technogenic soil was performed when using biocompost in its composition for compliance with existing hygienic requirements for soil quality in the Russian Federation. Based on the results of the vegetation experiment, optimal formulations of the technogenic soil were determined, i.e., the ratio of biocompost and sand, under which the most favorable conditions for plant growth are observed according to a combination of factors such as the number of germinated seeds, the maximum height of plants and the amount of biomass. The conducted research makes it possible to increase the proportion of recycled urban wastewater sludge in the future to obtain soils characterized by a high degree of nutrient availability for plants and potentially suitable for use in landscaping, the biological stage of reclamation of technogenically disturbed lands, as well as for growing herbaceous plants in open and protected soil.
-
Date submitted2024-04-22
-
Date accepted2024-06-13
-
Date published2024-07-04
Lithification of leachate from municipal solid waste landfills with blast furnace slag
- Authors:
- Mariya A. Pashkevich
- Yuliya A. Kulikova
The article presents an alternative method of utilization of blast furnace slag and leachate from solid municipal waste landfills, the formation of which occurs during the infiltration of atmospheric precipitation through the thickness of deposited waste. The method is based on the conversion of leachate from the liquid phase to the solid aggregate state by lithification using blast furnace slag as an astringent material. The hydraulic activity of slag, which depends on the amount of oxides contained in it, has been estimated. The investigated slag belongs to the 3rd grade, which confirms the possibility of its use as an astringent material. The filtrate was analyzed for the content of various elements, and the maximum permissible concentrations for each element were found to be exceeded. Chemical and biological oxygen demand were determined, and critically high values were installed (17200 mgO2/l and 4750 mgO2/l, respectively). The lithification process was divided into two stages. The first stage was to reduce the organic component in the filtrate using a coagulant, aluminum sulfate; the second stage was slag hydration. The optimum ratio of lithificate components in terms of mixture solidification rate was established at 1:0.03:1.25 (leachate, coagulant, blast furnace slag). The obtained material was analyzed for the solubility and content of various forms of metal. It is established that at infiltration of atmospheric precipitations through lithificate only 3 % of material will be washed out; concentrations of gross and mobile forms of heavy metals do not exceed the maximum permissible, except for the gross content of arsenic, mobile, and water-soluble forms of which were not found. The values of chemical (687 mgO2/l) and biological (173 mgO2/l) oxygen demand in the aqueous extract from lithificate decreased more than 25 times in comparison with the initial filtrate. According to the results of toxicological studies, lithificate was assigned an IV class of waste hazard, which confirms the possibility of its use as bulk material at landfills.
-
Date submitted2022-10-31
-
Date accepted2023-03-02
-
Date published2023-12-25
Lightweight ash-based concrete production as a promising way of technogenic product utilization (on the example of sewage treatment waste)
- Authors:
- Tatyana E. Litvinova
- Denis V. Suchkov
The study is devoted to the development of a method for the technogenic raw materials utilization. Special attention is paid to the prospect of involving products based on them in the production of new building materials. The results of Russian and foreign studies on the reuse of wastes, such as phosphogypsum, metallurgical slag, waste from municipal and industrial wastewater treatment, etc., in the building materials industry are considered. It has been established that the use of incinerated sewage sludge ash in construction is a promising direction in terms of environmental and economic efficiency. The research confirmed the compliance of the lightweight ash-based concrete components to the regulatory documentation requirements for a number of indicators. As a result of the research, the composition of the raw mixture for the lightweight concrete production with incinerated sewage sludge ash as a replacement for a part of the cement has been developed. In terms of parameters, the developed concrete corresponds to standard lightweight concrete, marked in accordance with the regulatory documents of the Russian Federation as D1300 (density not less than 1.3 g/cm3), Btb2 (flexural strength not less than 2 MPa), M200/B15 (compressive strength not less than 15 MPa). Lightweight ash-based concrete is suitable for use in construction, repair of roads and improvement of urban areas.
-
Date submitted2022-10-17
-
Date accepted2023-02-13
-
Date published2023-04-25
Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste
Due to the constantly deteriorating environmental situation in the regions with mining enterprises, the article considers the topical issue of disposing the maximum possible volume of waste from the mining and processing of low-grade ferrous ores through the creation of an effective underground environmental geotechnology. Traditional procedure with descending mining of reserves with a caving system does not allow waste to be disposed of in a gob. The idea is to use geotechnology based on the ascending order of mining the ore body, room excavation, leaving truncated pillars, and staggered arrangement of adjacent rooms in height, which makes it possible to form containers for waste disposal in the form of a cementless backfill. The main characteristics of the proposed procedure are investigated and compared with the traditional procedure of low-grade iron ores mining. It was established that from the point of view of the complete extraction of reserves and the unit costs for the preparatory-development operations, the processes are comparable, while in terms of the mining quality, the proposed option is much more efficient. Evaluation of environmental geotechnology by the criterion of waste disposal, performed according to the proposed methodology, showed that the combination of these technical solutions ensures the placement in the formed gob from 80 to 140% of all waste generated during the mining and beneficiation of low-grade iron ores.
-
Date submitted2021-09-02
-
Date accepted2022-01-24
-
Date published2022-04-29
Complex processing of high-carbon ash and slag waste
The paper considers a current issue of ash and slag processing for the Polyus Aldan JSC, that has accumulated over 1 million tons of this waste. Following the results of the review of Russian and foreign literature, four promising areas of their use were selected: road construction, building materials, reclamation of disturbed lands, and inert aggregates. To assess the possibility of implementing the selected disposal directions, the samples of ash and slag waste of the enterprise were sampled and analyzed. Fuel characteristics, chemical and mineral composition, as well as physico-chemical and mechanical properties of waste were determined. Taking into account the results of complex laboratory studies and the requirements of regulatory documents, each of the selected areas of using ash and slag waste was evaluated. It was found that their disposal by traditional methods has limitations, mainly related to the high content of unburned fuel residues. The high content of combustible substances and the high specific heat of combustion with a relatively low ash content suggested the possibility of thermal disposal of the studied waste. Based on the literature data, the characteristics of the preparation of organic coal-water suspensions based on the studied ash and slag waste were selected. As a result of a series of experiments on their flaring, the expediency of using the obtained fuel at the enterprise under consideration has been proved. The authors note the possibility of using ash obtained after thermal waste disposal in the road construction industry. The prospects for further research of technologies for the preparation and combustion modes of suspension fuel based on ash and slag waste are determined.
-
Date submitted2021-03-05
-
Date accepted2021-09-07
-
Date published2021-12-16
Utilization of sewage sludge as an ameliorant for reclamation of technogenically disturbed lands
- Authors:
- Tatyana A. Petrova
- Edelina Rudzisha
When rehabilitating technogenically disturbed lands of mining facilities, fertilizers and ameliorants are to be applied due to the lack of organic matter and nutrients required for the restoration of the soil and vegetation layer. The use of unconventional fertilizers (ameliorants) based on sewage sludge is one of the actual directions of land reclamation at mining sites. The purpose of the work is to summarize and analyze up-to-date information on the effectiveness of the use of sewage sludge for the reclamation of technogenically disturbed lands of mining and processing industries. The analysis is based on a review of recent studies aimed at assessing the impact of introduced sediment on soils, plant communities, and rehabilitated areas. The introduction of sewage sludge has a positive effect on the physical and chemical parameters of the soil (optimizes density and aggregation), saturates it with nutrients, i.e. N, P, K, Ca, Mg, and Na, thus improving plant growth indicators. However, it may contain a number of heavy metals and pathogens; therefore, studies of each sediment and conditions of reclaimed areas are necessary.
-
Date submitted2019-06-27
-
Date accepted2019-09-07
-
Date published2019-12-24
Optimization of geometrical parameters of the hydro-cyclone inertial Venturi separator
- Authors:
- V. N. Makarov
- A. V. Ugolnikov
- N. V. Makarov
The usage of nanosized particles as modifying agents opens new possibilities in the creation of materials with unique properties. The effective qualitative improvement of Russia's GDP structure is based on the recycling of technogenic mineral formations (TMF) and the production of high-tech products. Numerous studies have shown that the efficiency of this process is limited by high requirements to the fractional composition, median size, and dispersion of TMF particles, as well as imperfection of equipment and technology and their classification. The strict classification requirements must be taken into account, when developing separation methods for the dispersion of the median sizes of TMF microparticles under the conditions of the probabilistic distribution of the physical and mechanical parameters of the feed. The studies covered in the article are based on the provision on a significantly greater influence of inertial forces on the trajectory of a hydrodynamically unsteady motion of the dispersed «a microparticle – a drop of liquid» system during the hydro-cyclone separation with respect to the aerodynamic forces of their movement in a fluidized bed. The paper shows that within the range of kinetic energy of the translational motion of liquid droplets, which overcomes the aerodynamic barrier of coagulation of hydrophobic TMF particles, the minimum diameter of absorbed microparticles during hydro-cyclone coagulation depends only on the magnitude of the angular velocity of rotation of the liquid droplets. We obtained the equations for the Euler and Reynolds criteria, their average values, and the relaxation time of liquid droplets with integrated micro and nanoparticles of TMF, depending on their median size during hydro-cyclone separation. The developed mathematical model of inertial hydro-cyclone separation of finely dispersed TMF allows determining the optimal geometric parameters and energy characteristics of the Venturi separator, its aerator, and the position of the receiving tanks. The experimental results confirmed the possibility of classifying finely dispersed wastes of mining and metallurgical production in the range of median sizes (0.5-5)∙10 –6 m by fractions with a dispersion of not more than 20 %.
-
Date submitted2018-09-13
-
Date accepted2018-11-09
-
Date published2019-02-22
Lignin sludge application for for-est land reclamation: feasibility assessment
- Authors:
- M. A. Pashkevich
- T. A. Petrova
- E. Rudzisha
The article analyses waste generation of pulp and paper industry in North-Western Russia. The environmental impact of waste storage facilities of the pulp and paper mill was assessed, the need for utilization of lignin sludge was justified. In North-Western Russia, 1.21 million hectares of disturbed areas are in need for reclamation; they are abandoned quarries and lands alienated for pipeline and road construction. The suitability of lignin sludge for preparation of artificial fertile soils for reclamation purposes is estimated. For this purpose, experiments were carried out to create an artificial mixture with different ratios of lignin sludge and soil, to detect the maldevelopment of several plant species grown on various compositions of lignin sludge and soils. It was revealed that lignin sludge as an organic additive to soils is not toxic to vegetation and living organisms, allowing improving fertility of artificial soils.
-
Date submitted2014-10-04
-
Date accepted2014-12-26
-
Date published2015-08-25
Conservation of municipal solid waste landfills for landfill gas utilization
- Authors:
- M. A. Pashkevich
- T. A. Petrova
The assessment of existing technologies for storage and utilization of domestic solid waste in Russia and other countries is conducted. The regions of landfill sites for household waste disposal are investigated. The results of field observations of the quality of air, surface water and ground-water are given. The method of effective isolation of a landfill surface using polymer materials is proposed. The technological process of landfill surface covering with the help of a selfpropelled screening machine is described. This method allows organizing centralized biogas utilization from landfills, improves the environmental situation in the regions of their location, reduces air pollution and practically eliminates spontaneous combustion of waste.
-
Date submitted2010-07-27
-
Date accepted2010-09-09
-
Date published2011-03-21
Utilization of enrichment waste of diamondiferous rock accounting peculiarities of M.V.Lomonosov deposit
- Authors:
- A. Yu. Oblitsov
In given article the questions of enrichment waste utilization of M.V.Lomonosov diamond deposit are considered taking in account some important peculiarities of this deposit and prospective of obtaining building materials on basis of enrichment waste products is stated.
-
Date submitted2008-11-01
-
Date accepted2009-01-14
-
Date published2009-12-11
The decision of problem of rational use associated petroleum gas: administrative aspect
- Authors:
- E. A. Solovyova
- V. A. Ledovskikh
The kernel of the problem of associated petroleum gas rational use in Russia is stated in the article; the analyses of reasons that are obstacles in the way of associated petroleum gas utilization is fulfilled; the main directions of economic mechanism based on state-private cooperation in the sphere of production and use of associated petroleum gas are offered.