Submit an Article
Become a reviewer

Search articles for by keywords:
интерпретация главных компонент

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-05
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores

Article preview

The paper presents mining-technological substantiation of complete extraction of conditioned ores from complex-structured blocks of benches by mixing a layer of substandard ores of certain sizes. The relevance of the work consists in the development of innovative methods of establishing the parameters of the substandard layer of ores to be added to the conditioned ores. The main problem is to ensure complete extraction of useful components into concentrate from shipped ore with acceptable deviations from the required ones. A new typification of complex-structured ore blocks of the bench has been carried out. Analytical dependences of mining and geological characteristics of complex-structured ore blocks were obtained. Theoretical dependences for determining the main indicators of mineral processing are derived. Analytical dependences for determination of the content of useful component in shipped ore α' – mixture of conditioned ore with the content of useful component α and admixed layer of substandard ore with the content of useful component α'' are offered. For the first time in mining science, a new approach of complete extraction of conditioned ores from complex-structured blocks of benches by grabbing a certain part of substandard ores during excavation, increasing the volume of extracted ore and expanding the extraction of useful components in the concentrate has been substantiated. The increment of useful components can reach 10-15 % of the total volume of extraction, which allows predicting a significant increase in the completeness of mineral extraction from the Earth's interior.

How to cite: Rakishev B.R. Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores // Journal of Mining Institute. 2024. Vol. 270 . p. 919-930. EDN HNCZSX
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-14
  • Date accepted
    2023-12-27
  • Date published
    2024-12-25

Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons

Article preview

In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.

How to cite: Kusochkova E.V., Indrupskii I.M., Surnachev D.V., Alekseeva Y.V., Drozdov A.N. Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons // Journal of Mining Institute. 2024. Vol. 270 . p. 904-918. EDN QBQQCT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-06
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Localization of sites for the development of geomechanical processes in underground workings based on the results of the transformation and classification analysis of seismic data

Article preview

The paper considers an approach to localizing the intervals of development of geomechanical processes in underground structures based on the classification and transformation of seismic data. The proposed approach will make it possible to identify the intervals of fracturing, rock decompression, water inflow and other geomechanical processes when interpreting the results of seismic surveys. The technique provides for the formation of matrices of longitudinal (Vp), transverse (Vs) velocities and velocity ratios (Vs/Vp) along the research profile to perform sequential filtration. The filtration results serve as the basis for the formation of a bank of informative materials for further classification. Based on the domestic KOSKAD 3D software, four approaches have been implemented for a combined digital model of the Vp, Vs and Vs/Vp parameters. One of the key elements in the classification process is to combine grids to increase the probability of detecting intervals with heterogeneous identification features. The result of the application of this methodical approach is the construction of a comprehensive interpretative model, on which potential zones of geomechanical risks development are clearly manifested.

How to cite: Danilev S.M., Sekerina D.D., Danileva N.A. Localization of sites for the development of geomechanical processes in underground workings based on the results of the transformation and classification analysis of seismic data // Journal of Mining Institute. 2024. Vol. 266 . p. 260-271. EDN IEWVBO
Metallurgy and concentration
  • Date submitted
    2022-05-13
  • Date accepted
    2022-09-24
  • Date published
    2022-11-03

Rapid detection of coal ash based on machine learning and X-ray fluorescence

Article preview

Real-time testing of coal ash plays a vital role in the chemical, power generation, metallurgical, and coal separation sectors. The rapid online testing of coal ash using radiation measurement as the mainstream technology has problems such as strict coal sample requirements, poor radiation safety, low accuracy, and complicated equipment replacement. In this study, an intelligent detection technique based on feed-forward neural networks and improved particle swarm optimization (IPSO-FNN) is proposed to predict coal quality ash content in a fast, accurate, safe,and convenient manner. The data set was obtained by testing the elemental content of 198 coal samples with X-ray fluorescence (XRF). The types of input elements for machine learning (Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, P) were determined by combining the X-ray photoelectron spectroscopy (XPS) data with the change in the physical phase of each element in the coal samples during combustion. The mean squared error and coefficient of determination were chosen as the performance measures for the model. The results show that the IPSO algorithm is useful in adjusting the optimal number of nodes in the hidden layer. The IPSO-FNN model has strong prediction ability and good accuracy in coal ash prediction. The effect of the input element content of the IPSO-FNN model on the ash content was investigated, and it was found that the potassium content was the most significant factor affecting the ash content. This study is essential for real-time online, accurate, and fast prediction of coal ash.

How to cite: Huang J., Li Z., Chen B., Cui S., Lu Z., Dai W., Zhao Y., Duan C., Dong L. Rapid detection of coal ash based on machine learning and X-ray fluorescence // Journal of Mining Institute. 2022. Vol. 256 . p. 663-676. DOI: 10.31897/PMI.2022.89
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-31
  • Date accepted
    2022-04-26
  • Date published
    2022-07-13

Identification of structural control factors of primary gold ore occurrences by method of unmanned aeromagnetic survey by the example of the Neryungrisky district of Yakutia

Article preview

The long-term development of the geophysical industry, in which the methods of magnetometry are in maximum demand, as the simplest in instrumental and methodological execution, has determined the development of remote measurement methods implemented both from space and airborne carriers. The necessity to use the latter as an obligatory component of field surveys, providing coverage of significant areas, determines the need for using the unmanned low-tonnage carriers. Their use is implemented to search for predictive elements of structural (spatial, genetic) control of endogenous gold ore occurrences that allow predictive constructions, i.e., solving the problem of increasing gold reserves, which is being performed within the framework of federal programs. The purpose of the survey is to develop a system of instrumental and subsequent interpretation approaches in the organization of unmanned magnetometer survey, implemented for structural and geological mapping by the example of the Neryungrinsky district of Yakutia. Within the framework of the digital model formation of the relief and the anomalous magnetic field, a survey method using an unmanned aircraft, its technical characteristics are considered; the analysis and the author's modification of the office analysis of magnetometry data are performed. Based on the obtained materials, a physical and geological model of the investigated area was created, which is presented in the form of a geological and structural cut, accompanied by the physical characteristics of the structural and material complexes. The refinement of the physical and geological model was implemented by a joint morphostructural analysis of the remote base and the anomalous magnetic field using the results of quantative interpretation of the anomalous magnetic field. The result of the study is presented by an updated geological basis with the allocation of promising ore sites for their detailing as part of the planned large-scale geological and geophysical surveys. The scientific novelty of the work consists in the synthesis of the tried and tested methods of unmanned aeromagnetometric measurements and geostructural reconstructions, which allow the processing of both potential and non-potential geofields.

How to cite: Movchan I.B., Shaygallyamova Z.I., Yakovleva A.A. Identification of structural control factors of primary gold ore occurrences by method of unmanned aeromagnetic survey by the example of the Neryungrisky district of Yakutia // Journal of Mining Institute. 2022. Vol. 254 . p. 217-233. DOI: 10.31897/PMI.2022.23
Oil and gas
  • Date submitted
    2021-05-28
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Features of grouping low-producing oil deposits in carbonate reservoirs for the rational use of resources within the Ural-Volga region

Article preview

A methodology has been developed and a procedure for selecting homogeneous groups has been implemented using a set of parameters characterizing the properties of formation fluids, layering conditions, geological and physical properties of formations at different levels of the hierarchy. An algorithm for identifying deposits for monitoring and justifying measures to improve the efficiency of development management is proposed. A justification for the selection of associative groups of long-term developed objects using the parameters of geological heterogeneity according to different tectonic-stratigraphic elements is presented. To reduce the degree of uncertainty in the evaluation of objects by the degree and nature of geological heterogeneity, the parameters reflecting the degree of uncertainty of the system using complex characteristics are proposed. For different deposit associations, a different influence of the features of the object structure on the degree of their division has been established. In the process of deposit drilling, as additional information about development objects is obtained, it is necessary to specify the nature of the distinguished groups of objects first of all based on the use of characteristics of geological heterogeneity. Comparison of various grouping options shows the need to take into account the geological heterogeneity of objects during their drilling. The identification of groups of objects using a limited number of parameters is approximate, but at the stage of drafting the first design documents, it is possible to solve certain tasks aimed at determining the strategy for the development of deposits

How to cite: Mukhametshin V.S., Khakimzyanov I.N. Features of grouping low-producing oil deposits in carbonate reservoirs for the rational use of resources within the Ural-Volga region // Journal of Mining Institute. 2021. Vol. 252 . p. 896-907. DOI: 10.31897/PMI.2021.6.11
Mining
  • Date submitted
    2021-01-21
  • Date accepted
    2021-02-24
  • Date published
    2021-04-26

Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district)

Article preview

The underground space of the Kupol deposit is analyzed as a multicomponent system – rocks, underground water, microbiota, gases (including the mine atmosphere) and supporting structures – metal support and shotcrete (as an additional type of barring) and also stowing materials. The complex of host rocks is highly disintegrated due to active tectonic and volcanic activity in the Cretaceous period. The thickness of sub-permafrost reaches 250-300 m. In 2014, they were found to contain cryopegs with abnormal mineralization and pH, which led to the destruction of metal supports and the caving formation. The underground waters of the sub-permafrost aquifer are chemically chloride-sulfate sodium-calcium with a mineralization of 3-5 g/dm 3 . According to microbiological analysis, they contain anaerobic and aerobic forms of microorganisms, including micromycetes, bacteria and actinomycetes. The activity of microorganisms is accompanied by the generation of hydrogen sulfide and carbon dioxide. The main types of corrosion – chemical (sulfate and carbon dioxide), electrochemical and biocorrosion are considered. The most hazardous is the biocorrosion associated with the active functioning of the microbiota. Forecasting and systematization of mining and geological processes are carried out taking into account the presence of two zones in depth – sub-permafrost and below the bottom of the sub-permafrost, where mining operations are currently underdone. The importance of assessing the underground space as a multicomponent environment in predicting mining and geological processes is shown, which can serve as the basis for creating and developing specialized monitoring complex in difficult engineering and geological conditions of the deposit under consideration.

How to cite: Dashko R.E., Romanov I.S. Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district) // Journal of Mining Institute. 2021. Vol. 247 . p. 20-32. DOI: 10.31897/PMI.2021.1.3
Oil and gas
  • Date submitted
    2019-03-24
  • Date accepted
    2019-05-13
  • Date published
    2019-08-23

Calculation of Oil-saturated Sand Soils’ Heat Conductivity

Article preview

Nowadays, there are significant heavy high-viscosity oil reserves in the Russian Federation with oil recovery coefficient not higher than 0.25-0.29 even with applying modern and efficient methods of oil fields development. Thermal methods are the most promising out of the existing ways of development, main disadvantage of which is large material costs, leading to the significant rise in the cost of extracted oil. Thus, creating more efficient thermal methods and improving the existing ones, is the task of great importance in oil production. One of the promising trends in enhancing thermal methods of oil recovery is the development of bottomhole electric steam generators. Compared to the traditional methods of thermal-steam formation treatment, which involve steam injection from surface, well electrothermal devices can reduce energy losses and improve the quality of steam injected into the formation. For successful and efficient organization of oil production and rational development of high-viscosity oil fields using well electrothermal equipment, it is necessary to take into account the pattern of heat propagation, both in the reservoir and in the surrounding space, including the top and bottom. One of the main values characterizing this process is the heat conductivity λ of oil-bearing rocks. The article describes composition of typical oil-saturated sand soils, presents studies of heat and mass transfer in oil-saturated soils, reveals the effect of various parameters on the heat conductivity of a heterogeneous system, proposes a method for calculating the heat conductivity of oil-bearing soils by sequential reduction of a multicomponent system to a two-component system and proves the validity of the proposed approach by comparing acquired calculated dependencies and experimental data.

How to cite: Sobota J., Malarev V.I., Kopteva A.V. Calculation of Oil-saturated Sand Soils’ Heat Conductivity // Journal of Mining Institute. 2019. Vol. 238 . p. 443-449. DOI: 10.31897/PMI.2019.4.443
Mining
  • Date submitted
    2019-03-19
  • Date accepted
    2019-05-22
  • Date published
    2019-08-23

Engineering of Complex Structure Apatite Deposits and Excavating-Sorting Equipment for Its Implementation

Article preview

Development of Oshurkovskoye apatite deposit with conventional methods, using drilling, blasting and then processing of extracted ore by means of flotation and construction of hydraulic structures to store wet tailings, turns out to be impossible, as the reservoir is located in a special ecological zone of Transbaikal; moreover, the deposit has a complex geological structure and a low grade of valuable component in the orebody. Refinement of the mineral product occurs primarily during its processing; however, ore grade can already be controlled in the process of its extraction. Advancement of technical facilities opens up new opportunities of selective mining for complex structure deposits. The purpose of this research is to create a technology, which will upgrade the quality of mineral substance, fed to the processing plant, directly at the extraction stage. The paper proposes a technological development scheme for Oshurkovskoye deposit using an excavating-sorting complex containing a transport-sorting facility and a measuring unit for estimation of the grade in a milled rock mass; it allows to separate a rich fine fraction of substandard ore, which under conventional mining practices would have been sent to the stockpile of temporarily substandard ore. Separation of fine fractions of apatite ore in the transport-sorting facility allows to reduce dusting during production and cuts the losses of valuable component, associated with aeration of fine fractions during loading and transportation of the rock mass. Positioning of oversize material in the open trench with its subsequent selective extraction by the loading machine facilitates non-stop operation of the mining-sorting equipment, which provides an increase in the productivity of mining operations.

How to cite: Cheban A.Y. Engineering of Complex Structure Apatite Deposits and Excavating-Sorting Equipment for Its Implementation // Journal of Mining Institute. 2019. Vol. 238 . p. 399-404. DOI: 10.31897/PMI.2019.4.399
Geology
  • Date submitted
    2018-05-22
  • Date accepted
    2018-07-04
  • Date published
    2018-10-24

Multivariance of a velocity model for structural plotting based on seismic and borehole data

Article preview

The paper discusses the peculiarities of structural modelling (forecast of the depths of the reflecting horizons) based on the seismic and drilling data system. Seismic data are represented by vertical time values and the stacking velocity of borehole data that are the depth marks of the reflecting horizons. Vertical time and the depth of the reflecting horizons are bound by the equation of average velocity but the average velocity is not determined in a seismic experiment, therefore an issue of choosing a velocity model of a complex natural object arises. The task of structural modelling is solved by the selection of formal expressions containing correlations between the parameters of the underlying model and kinematic parameters of the wave field. The optimal decision on model selection is determined by the minimum discrepancy between the predicted and actual values of the depth of the sample boreholes. A practical example shows possible variants of the interpretation model. An inverse kinematic problem on converting the vertical time of the reflected waves at the depth of horizons is solved in each production report on the results of seismic work and is probably the most common objective of seismic exploration. Considering the variety of research objects and the apparent obviousness of the solution, this topic is underrepresented in scientific literature.

How to cite: Sysoev A.P. Multivariance of a velocity model for structural plotting based on seismic and borehole data // Journal of Mining Institute. 2018. Vol. 233 . p. 459-470. DOI: 10.31897/PMI.2018.5.459
Geology
  • Date submitted
    2016-11-18
  • Date accepted
    2016-12-28
  • Date published
    2017-04-14

Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse

Article preview

The paper describes theory, method and first experimental results of research on the interaction between electromagnetic waves of extremely low and ultra low frequency (0.1-200 Hz), the Earth crust and ionosphere in the field of two mutually orthogonal industrial power lines, 109 and 120 km long, in the course of FENICS experiment (Fennoscandian Electrical conductivity from Natural and Induction Control Source soundings). The main focus was on the observation results along the line of Karelia-Kola geotraverse over a distance of 700 km from the source. High horizontal homogeneity of geoelectrical lithosphere section has been detected in the eastern part of the Baltic shield at depth range from 10-15 to 50-70 km. Parameters of «regular» lithosphere section have been specified to the depth of 60-70 km. As a result of inverse problem solution for the western part of Karelia and Central Finland, a zone of decreased transverse resistivity has been detected at the depth of 50-60 km, corresponding to the area, detected by seismic methods, where Moho boundary reaches the same depth.

How to cite: Shevtsov A.N., Zhamaletdinov A.A., Kolobov V.V., Barannik M.B. Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse // Journal of Mining Institute. 2017. Vol. 224 . p. 178-188. DOI: 10.18454/PMI.2017.2.178
Geoeconomics and Management
  • Date submitted
    2016-09-23
  • Date accepted
    2016-11-18
  • Date published
    2017-02-22

Principles of assessment and management approaches to innovation potential of coal industry enterprises

Article preview

This paper examines problems related to forming a complex of indicators to assess innovation potential of an industrial enterprise, on the example of coal industry enterprises, and an integral indicator of innovation potential, used for comparative analysis of the state of affairs in the industry. Analysis of different approaches to defining the term «innovation potential» for industrial enterprises has been carried out; resource-based, resultative, integrative and capacitive approaches have been highlighted, the latter one based on assessment of enterprise capacities. A conclusion has been made regarding advantages of integrative approach. Research has been made on the role of industry in the fuel and power sector of China and dynamics of industry and enterprise development in Shanxi province. Basing on suggested approach a system of assessment principles has been formulated, taking into account specific features of coal industry enterprises. Complex of indicators to assess innovation potential has been developed using expert evaluation method. An expertise procedure is proposed to assess competence of experts; results obtained from the expertise are presented. Proposed complex of indicators includes 23 parameters combined into three groups. Testing of proposed complex of indicators has been carried out on the example of coal industry in Shanxi province (China). Application of all stated principles has been proved in the process of indicator selection, assessment and formulation of recommendations for subsequent innovation potential management of coal industry enterprises. Proposed approach to forming a complex of indicators of innovation potential for industry enterprises permits to link together the logic of innovation potential definition, formation of the system of its principles, selection of the indicators complex for assessment and subsequent innovation potential management of the enterprise.

How to cite: Kozlov A.V., Teslya A.B., Chzhan S. Principles of assessment and management approaches to innovation potential of coal industry enterprises // Journal of Mining Institute. 2017. Vol. 223 . p. 131-138. DOI: 10.18454/PMI.2017.1.131
Oil and gas
  • Date submitted
    2015-10-11
  • Date accepted
    2015-12-13
  • Date published
    2016-08-22

The specifics of operating minor deposits (as given by the examples of gas condensate deposits of the Northern Caucasus)

Article preview

One of the most important directions in upgrading well productivity in the process of mining hydrocarbons consists in fighting with salt formation and salt deposition. Solving that problem becomes especially actual when operating deposits that are in their final stage of exploitation in complex mining and geological conditions accompanied by deposition of salts in the well foot area of oil bed and their sedimentation on the sub-surface and surface equipment. It provokes a drop in well productivity and results in off-schedule repair works. Specifics are considered of exploiting minor gas condensate deposits of the Northern Caucasus that are operated under complicated mining and geological conditions of anomalously high bed pressures, high temperatures, strong depressions on the beds and inflow of mineralized water from water saturated seams. Processes are studied of salt deposition from heavy hydrocarbons in the well foot and the bed area surrounding it. Water sample analyses data from different wells have demonstrated that the main salts carrier is the associated water, and the principal sedimenting agents are corrosion products, as confirmed by the results of microscopic studies. The dynamics is presented of salt deposition in the “well foot – wellhead – separator” system retrieved from the results of studies of reaction products in the well foot zone of oil bed. It is demonstrated that the efficiency of struggling with salt deposition in the course of mining hydrocarbons depends on comprehensive approach to the problem, the principal thrust lying with prevention of such deposition. Possible ways are considered to prevent precipitation of ferric compounds in the course of operating gas condensate wells, a way is suggested to intensify gas inflow.

How to cite: Gasumov R.A. The specifics of operating minor deposits (as given by the examples of gas condensate deposits of the Northern Caucasus) // Journal of Mining Institute. 2016. Vol. 220 . p. 556-563. DOI: 10.18454/PMI.2016.4.556
Metallurgy and concentration
  • Date submitted
    2015-07-16
  • Date accepted
    2015-09-28
  • Date published
    2016-02-24

Examination of the raw materials and the products of the combustible shales processing

Article preview

The reserves of combustible slates of Russia in shale oil and gas equivalent are more than the reserves of oil and natural gas. The formation of a large volume of ash is a major problem connected to the processing and the usage of the combustible slates. It is possible to look at this problem from a different angle of vision if a mineral part of slates is considered as a complex organo-mineral raw material where a mineral substance of the slates is the same raw material as the organic one. For this purpose, it is required to study in detail the physicochemical characteristics of the combustible slates and the behavior of the organic and the mineral parts of the slates during the heat treatment. This research focuses on the phase composition of Leningrad fuel shale and its changes on pyrolysis. They were studying the phase composition, the gas phase outlet, pyrolysis mass balance of combustible slates in the nitrogen atmosphere in the temperature range of 200-1000 °С, the porosity changes of combustible slate in the nitrogen atmosphere in the temperature range of 25-900 °С. It is determined that the main minerals of combustible slates are calcite (28 %), quartz (25 %), illite (17 %), and microcline (11 %). The temperature dependence of the shale porosity is studied in a nitrogen atmosphere and in air. The porosity changes in four stages: (I) 25-200 °C; (II) 200-400 °C; (III) 400-600 °C; (IV) 600-900 °C. The mass balance pyrolysis of combustible slates in a PTK_1.2_40 tube furnace is made up, in the nitrogen atmosphere of 200, 400, 600, 800 and 1000 °C.

How to cite: Kondrasheva N.K., Saltykova S.N. Examination of the raw materials and the products of the combustible shales processing // Journal of Mining Institute. 2016. Vol. 217 . p. 88-95.
Geology and geophsics
  • Date submitted
    2010-07-09
  • Date accepted
    2010-09-12
  • Date published
    2011-03-21

Usage of simulation modeling for planning and interpretation experimental-filtrational works when prospecting solid mineral product deposit

Article preview

Is considered the method of modeling geofiltration processes for simulating the planned pumping test on the diamond deposit named of V.P.Grib and of interpretation carried out by pumping test in the field of coal mine «Kotinskaya» in the Kuzbass. Are drown conclusions about effectiveness increase of experimental-flow works with using simulating modeling by experiment optimization and improvement of self-descriptiveness on interpretation stage by taking to the account more detailed investigation of hydro conditions.

How to cite: Kotlov S.N., Volodchenko K.E. Usage of simulation modeling for planning and interpretation experimental-filtrational works when prospecting solid mineral product deposit // Journal of Mining Institute. 2011. Vol. 189 . p. 38-41.
Problems in geodynamic safety in the exploration of solid deposits
  • Date submitted
    2009-10-14
  • Date accepted
    2009-12-11
  • Date published
    2010-09-22

Investigation of present-day stress-strain state of rock mass by the results of observations at geodynamic polygons

Article preview

The methods are suggested for treatment of the results of optical distance and levelling measurements at the underground geodynamic polygons involving in their calculation the tensors of additional stresses and deformations, component of rotation and specific energy of deformability. As an example, consideration is given to changes in time of movements, deformations and specific energy of deformability at one of geodynamic polygons of the Kola peninsular.

How to cite: Savchenko S.N., Kasparyan E.V., Smagina Y.G. Investigation of present-day stress-strain state of rock mass by the results of observations at geodynamic polygons // Journal of Mining Institute. 2010. Vol. 188 . p. 112-116.
Problems in geodynamic safety in the exploration of solid deposits
  • Date submitted
    2009-10-29
  • Date accepted
    2009-12-26
  • Date published
    2010-09-22

Control system of rock pressure at the «Antey» deposit

Article preview

The paper deals with the geomechanical monitoring system of the Antey deposits of uranium ores. Characteristics of the methods and means for rock pressure control are given.

How to cite: Prosekin B.A., Ilin E.A. Control system of rock pressure at the «Antey» deposit // Journal of Mining Institute. 2010. Vol. 188 . p. 95-98.
Mining
  • Date submitted
    2009-08-23
  • Date accepted
    2009-10-05
  • Date published
    2010-02-01

Developing a rational technology of utilization оf bio and oil slimes of the Kinef Ltd by an extraction оf useful components

Article preview

The paper deal with the problem of developing a rational technology of slime and silt recycling for company «KINEF», which nowadays is one of the leading companies in Russia in it area. Therefore the question of soil-waste utilization is one of the major issues to adress for this organisation. During the reaserch samples of soil waste were taken and analyised, which helped to work out a complite technology of recycling. Special attention is paid to the necessity of extraction of the useful components.

How to cite: Moiseeva K.A. Developing a rational technology of utilization оf bio and oil slimes of the Kinef Ltd by an extraction оf useful components // Journal of Mining Institute. 2010. Vol. 186 . p. 68-70.
Geophysics
  • Date submitted
    2008-10-04
  • Date accepted
    2008-12-13
  • Date published
    2009-12-11

1D-interpretation technology of airborne tem data

Article preview

One-dimensional interpretation methods of airborne transient electromagnetic data are considered. Main techniques, used for adaptation of standard methods of ground electroprospecting data interpretation to airborne technique, are described. The efficiency of methods examined was analyzed on theoretical data set. An example of practical application of methods developed is presented.

How to cite: Chernyshev A.V. 1D-interpretation technology of airborne tem data // Journal of Mining Institute. 2009. Vol. 183 . p. 281-284.
Geophysics
  • Date submitted
    2008-10-07
  • Date accepted
    2008-12-05
  • Date published
    2009-12-11

The application of areal technology and 3d data interpretation tem sounding when constructing the volume geoelectrical model of compound medium

Article preview

Analysis of possibilities of different electrical technologies is carried out. Problems of applications of one-dimension and multidimensional inversions in the process of interpretation are discussed. Example of practical application of two- and three-dimension interpretation of electrical data in the process of ore prospecting in complicated geological media is presented. The example illustrates possibilities of electrical method as original research method, which enables to develop three-dimensional models of the medium under investigation.

How to cite: Trigubovich G.M., Persova M.G., Krupnov E.V., Soloveichik Y.G. The application of areal technology and 3d data interpretation tem sounding when constructing the volume geoelectrical model of compound medium // Journal of Mining Institute. 2009. Vol. 183 . p. 277-280.
Geophysics
  • Date submitted
    2008-10-01
  • Date accepted
    2008-12-15
  • Date published
    2009-12-11

Possibilities for localization of zones of hydrocarbon accumulation by application of АМТ-data component analysis

Article preview

Principal component method was used for qualitative interpretation of a matrix of magnetotelluric parameters. Localization of hydrocarbon congregation was the purpose of the investigations. Model of subvertical diffusion of hydrocarbon from reservoir was used as physical basis of oil and gas prospecting. The hydrocarbon роо l generates continuous spatial halation of hydrocarbon above the reservoir. Due to reducing reactions in the area the volumetric pyritization of rocks took place.

How to cite: Lozovoi A.L., Grechisheva D.V., Prikhodchenko V.F., Ingerov A.I. Possibilities for localization of zones of hydrocarbon accumulation by application of АМТ-data component analysis // Journal of Mining Institute. 2009. Vol. 183 . p. 255-259.
Geophysics
  • Date submitted
    2008-10-23
  • Date accepted
    2008-12-05
  • Date published
    2009-12-11

Application of electrical prospecting in combination with seismic prospecting for the geological section prediction and search of hydrocarbon deposits

Article preview

The possibility of application of electrical prospecting method SGN (sounding by field growing in the near-field zone) in combination with CDP seismic prospecting for sedimentary section investigations and hydrocarbon deposits prospecting is considered. The physical basis of the method application for hydrocarbon prospecting is the effect of higher resistance of seams, saturated by hydrocarbons. The effect is reflected in the curve of electromagnetic field growth ε(t). The procedures of field works, processing and interpretation of electrical prospecting data are presented.

How to cite: Kuzin V.A., Korukhova A.A. Application of electrical prospecting in combination with seismic prospecting for the geological section prediction and search of hydrocarbon deposits // Journal of Mining Institute. 2009. Vol. 183 . p. 251-254.