Submit an Article
Become a reviewer

Search articles for by keywords:
загрязнение почв

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-31
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses

Article preview

Remediation is an important area of oil-contaminated soil restoration in Russia, since oil refining industry is the major one for Russia and neighbouring countries, and the issues of environmentally effective and economically profitable remediation of oil contamination have not yet been solved. Soils under various economic uses have different surface areas and degrees of soil particles envelopment with oil due to the presence or absence of cultivation, the amount of precipitation and plant litter. The introduction of various substances for remediation into oil-contaminated soils of steppes (arable land), forests, and semi-deserts, considering their differences, gives different results. Biochar is coal obtained by pyrolysis at high temperatures and in the absence of oxygen. The uniqueness of this coal lies in the combination of biostimulating and adsorbing properties. The purpose of the study is to conduct an environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses. The article compares the environmental assessments of biochar application in oil-contaminated soils with different particle size fraction. The following indicators of soil bioactivity were determined: enzymes, indicators of initial growth and development intensity of radish, microbiological indicators. We found that the most informative bioindicator correlating with residual oil content is the total bacteria count, and the most sensitive ones are the roots length (ordinary chernozem and brown forest soil) and the shoots length (brown semi-desert soil). The use of biochar on arable land and in forest soil (ordinary chernozem and brown forest soil) is less environmentally efficient than in semi-desert soil (brown semi-desert soil). The study results can serve to develop measures and managerial and technical solutions for remediation of oil-contaminated soils under various economic uses.

How to cite: Minnikova T.V., Kolesnikov S.I. Environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses // Journal of Mining Institute. 2025. Vol. 271 . p. 84-94. EDN UOQKTG
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-22
  • Date accepted
    2024-06-13
  • Date published
    2024-07-04

Comprehensive utilization of urban wastewater sludge with production of technogenic soil

Article preview

The article presents the analysis of the existing approach to wastewater sludge treatment and justifies the selection of the most promising management technology that allows maximum use of wastewater sludge resource po-tential. To obtain a useful product (biocompost) suitable for use as part of technogenic soil, experimental studies of aerobic stabilization of organic matter of dehydrated urban wastewater sludge with the addition of other waste by using passive composting technology were carried out. The technology is included in the list of best available technologies (BAT). The selection of the most optimal components for the mixture was based on the results of determining the C and N content, humidity and pH of the components used that ensured the composting of organic waste. The results of laboratory studies of the obtained biocompost according to the main agrochemical and sanitary-epidemiological indicators are presented. Testing was carried out according to the criterion of toxicity of the biocompost’s aqueous extract. The assessment of the technogenic soil was performed when using biocompost in its composition for compliance with existing hygienic requirements for soil quality in the Russian Federation. Based on the results of the vegetation experiment, optimal formulations of the technogenic soil were determined, i.e., the ratio of biocompost and sand, under which the most favorable conditions for plant growth are observed according to a combination of factors such as the number of germinated seeds, the maximum height of plants and the amount of biomass. The conducted research makes it possible to increase the proportion of recycled urban wastewater sludge in the future to obtain soils characterized by a high degree of nutrient availability for plants and potentially suitable for use in landscaping, the biological stage of reclamation of technogenically disturbed lands, as well as for growing herbaceous plants in open and protected soil.

How to cite: Bykova M.V., Malyukhin D.M., Nagornov D.O., Duka A.A. Comprehensive utilization of urban wastewater sludge with production of technogenic soil // Journal of Mining Institute. 2024. Vol. 267 . p. 453-465. EDN IAYJKS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-11-02
  • Date accepted
    2023-03-02
  • Date published
    2023-04-25

Environmental damage from the storage of sulfide ore tailings

Article preview

The mining industry is one of the most challenging in ensuring environmental safety. During the last century, the Karabash Copper Smelting Plant was processing sulfide ores and depositing the tailings into storage facilities that now occupy an area of more than 50 hectares. To date, abandoned tailings are a significant source of natural water, air, and soil pollution in the Karabash city district. The article comprehensively examines the environmental impact of the Karabashmed copper smelter, one of the oldest metallurgical enterprises in Russia. The effects of seepage from the two Karabashmed tailings facilities on water resources were assessed. We revealed that even outside the area of the direct impact of processing waste, the pH of natural water decreases to values 4-5. Further downstream, the infiltration water from the tailings pond No. 4 reduces the pH of river water to 3.0-3.5. The presented results of environmental engineering surveys are derived from sampling water and bottom sediments of the Ryzhiy Stream and the Sak-Elga River, sample preparation, and quantitative chemical analysis. The study revealed significant exceedances of the maximum permissible concentrations for a number of chemical elements in the impact zone of the copper ore processing tailings.

How to cite: Pashkevich M.A., Alekseenko A.V., Nureev R.R. Environmental damage from the storage of sulfide ore tailings // Journal of Mining Institute. 2023. Vol. 260 . p. 155-167. DOI: 10.31897/PMI.2023.32
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-08
  • Date accepted
    2023-03-02
  • Date published
    2023-04-25

Geochemical properties and transformation of the microelement composition of soils during the development of primary diamond deposits in Yakutia

Article preview

Extraction of diamonds from primary deposits in Siberia is associated with the development of kimberlite pipes in challenging environmental conditions, accompanied by a complex impact on the environment. The article presents the results of monitoring the soil cover of the Nakyn kimberlite field in the Yakutia diamond province, which is affected by the facilities of the Nyurba Mining and Processing Division. Development of primary diamond deposits has a large-scale impact on the subsoil, topography, and soil cover: creation of the world's largest quarries, formation of dumps more than 100 m high, arrangement of extensive tailings, formation of solid and liquid industrial wastes of various chemical composition. The research is aimed at studying the spatial and temporal patterns of the technogenic impact on the soil cover, identifying the nature and level of transformation of the microelement composition of soils based on the analysis of the intra-profile and lateral distribution of mobile forms of trace elements. The study targets in 2007-2018 were zonal types of permafrost soils of northern taiga landscapes, cryozems, occupying 84 % of the total study area, which are characterized by biogenic accumulation of mobile forms of Ni, Mn, and Cd in the upper AO, A cr horizons, and Cr, Ni, Co, Mn, Cu in the suprapermafrost CR horizon. We found out that the contamination of the soil cover of the industrial site at the Nyurba Mining and Processing Division is of a multielement nature with local highly to very highly contaminated areas. Over a ten-year observation period, areas of stable soil contamination are formed, where the main pollutants are mobile forms of Mn, Zn, Ni. We suggest that against the background of a natural geochemical anomaly associated with trap and kimberlite magmatism, technogenic anomalies are formed in the surface horizons of soils. They are spatially linked to technogenically transformed landscapes. One of the sources of pollutants is the dispersion of the solid phase of dust emissions in the direction of the prevailing winds, which leads to the formation of soils with abnormally high contents of mobile forms of Mn, Zn, Ni.

How to cite: Legostaeva Y.B., Gololobova A.G., Popov V.F., Makarov V.S. Geochemical properties and transformation of the microelement composition of soils during the development of primary diamond deposits in Yakutia // Journal of Mining Institute. 2023. Vol. 260 . p. 212-225. DOI: 10.31897/PMI.2023.35
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-11-04
  • Date accepted
    2023-03-03
  • Date published
    2023-04-25

Efficiency of acid sulphate soils reclamation in coal mining areas

Article preview

During the development of coal deposits, acid mine waters flowing to the surface cause the formation of acid sulphate soils. We study the effectiveness of soil reclamation by agrochemical and geochemical methods at the site of acid mine water discharge in the Kizel Coal Basin, carried out in 2005 using alkaline waste from soda production and activated sludge. A technosol with a stable phytocenosis was detected on the reclaimed site, and soddy-podzolic soil buried under the technogenic soil layer with no vegetation on the non-reclaimed site. The buried soddy-podzolic soil retains a strong acid рН concentration Н 2 О = 3. A high content of organic matter (8-1.5 %) is caused by carbonaceous particles; the presence of sulphide minerals reaches a depth of 40 cm. Technosol has a slightly acid pH reaction H 2 O = 5.5, the content of organic matter due to the use of activated sludge is 19-65 %, the presence of sulphide minerals reaches a depth of 20-40 cm. The total iron content in the upper layers of the technosol did not change (190-200 g/kg), the excess over the background reaches 15 times. There is no contamination with heavy metals and trace elements, single elevated concentrations of Li, Se, B and V are found.

How to cite: Mitrakova N.V., Khayrulina E.A., Blinov S.M., Perevoshchikova A.A. Efficiency of acid sulphate soils reclamation in coal mining areas // Journal of Mining Institute. 2023. Vol. 260 . p. 266-278. DOI: 10.31897/PMI.2023.31
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-12
  • Date accepted
    2022-11-17
  • Date published
    2023-04-25

Microbiological remediation of oil-contaminated soils

Article preview

Microbiological remediation is a promising technology for the elimination of environmental contamination by oil and petroleum products, based on the use of the metabolic potential of microorganisms. The issue of environmental contamination by crude oil and its refined products is relevant in the Russian Federation since the oil industry is one of the leading sectors of the country. Mechanical and physico-chemical methods of treatment are widely used to clean oil-contaminated soils. However, the methods belonging to these groups have a number of significant drawbacks, which actualizes the development of new methods (mainly biological), since they are more environmentally friendly, cost-effective, less labor-intensive, and do not require the use of technical capacities. Various bio-based products based on strains and consortia of microorganisms have been developed that have proven effectiveness. They include certain genera of bacteria, microscopic fungi, and microalgae, substances or materials acting as sorbents of biological agents and designed to retain them in the soil and increase the efficiency of bioremediation, as well as some nutrients. Statistical data, the most effective methods, and technologies, as well as cases of using microorganisms to restore oil-contaminated soils in various climatic conditions are presented.

How to cite: Sozina I.D., Danilov A.S. Microbiological remediation of oil-contaminated soils // Journal of Mining Institute. 2023. Vol. 260 . p. 297-312. DOI: 10.31897/PMI.2023.8
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-08
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry

Article preview

The analysis of the main environmental consequences of leaks and local spills of petroleum products at the enterprises of the mineral resource complex is presented. It is established that the problem of soil contamination with petroleum products at the facilities of the mineral resource complex and enterprises of other industries is caused by significant volumes of consumption of the main types of oil products. Based on the results of the author's previous field research, a series of experiments was carried out, consisting in modeling artificial soil pollution with petroleum products such as gasoline, diesel fuel, highly refined oil, motor oil, and transmission oil, followed by their purification by heat treatment at temperatures of 150, 200, and 250 °C. The 250 °C limit of the heating temperature was set due to the need to partially preserve the structure and quality of the soil after heat treatment to preserve its fertility. When the processing temperature rises to 450 °C, all humates are completely burned out and, as a result, productivity is lost. Confirmation is provided by the results of experiments to determine the humus content in uncontaminated soil and soil treated at different temperatures. It was found that at a maximum processing temperature of 250 °C, about 50 % of the initial organic carbon content is preserved. According to the results of the conducted experimental studies, the dependences of the required processing temperature on the concentration of petroleum products to reduce the concentration of petroleum products to an acceptable level have been established. The methodology of thermal desorption cleaning of soils with varying degrees of contamination at enterprises of the mineral resource complex is presented.

How to cite: Pashkevich M.A., Bykova M.V. Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry // Journal of Mining Institute. 2022. Vol. 253 . p. 49-60. DOI: 10.31897/PMI.2022.6
Geoecology and occupational health and safety
  • Date submitted
    2020-10-13
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Trace element accumulation by soils and plants in the North Caucasian geochemical province

Article preview

Long-term studies of the North Caucasian geochemical province allowed to establish regional abundances and calculate accumulation (dispersion) factors for chemical elements in rocks, soils, and plants. Certain natural regional patterns characterize the province. Associations of elements in high and low concentrations are often determined by the predominant composition of rocks: carbonate-terrigenous, terrigenous, and igneous. The study of the average contents of several chemical elements in the soils of the province showed that the association of accumulated elements includes metals with different migration characteristics. Thus, despite the rather close values of the ionic radii, Pb, Zn, Cu, and Li (judging by the ionic potential) are characterized by the formation of cations, while Mn, Mo, and Zr form complex ions. Such elements as Zn, Cu, and Pb are mainly accumulated on hydrosulfuric barriers, while Mo, Co, and Mn are stopped by oxygenous barriers. For Cu, Zn, Mo, and Co, biogenic accumulation plays a significant role, while for Pb and Ni it is practically absent. The absolute dispersion of the elements did not reach environmentally hazardous values, although it indicates a fairly intensive migration. In woody plants, Ba, Nb, Sc, Sr, and Zn are accumulated most intensively.

How to cite: Alekseenko V.A., Shvydkaya N.V., Bech J., Puzanov A.V., Nastavkin A.V. Trace element accumulation by soils and plants in the North Caucasian geochemical province // Journal of Mining Institute. 2021. Vol. 247 . p. 141-153. DOI: 10.31897/PMI.2021.1.15
Geoecology and occupational health and safety
  • Date submitted
    2020-06-14
  • Date accepted
    2020-06-14
  • Date published
    2020-06-30

Geochemical approach in assessing the technogenic impact on soils

Article preview

The soil assessment was carried out in the technogenically-affected area of Irkutsk Oblast with the geochemical approach as a key geoecological method using physical and chemical techniques of analysis and ecodiagnostics. Diagnostic signs of the disturbed natural properties of the soil were revealed up to a depth of 40 cm in the profile based on macro- and micromorphometric parameters. The content of heavy metals (HM) – Pb, Zn, Hg, and Cu with an excess of standards was determined, and empirical HM – pH correlations were obtained by statistical clustering of the data array. The contributions of additional factors affecting the chemical element distribution in the soil layer were investigated. Significant soil contamination with sulfates and the possibility of implementing the ion-exchange of HM andfor element immobilization were revealed. It was shown that reactions with sulfates and the influence of pH, HM exchange processes involving mobile K and P can determine the nature of the described chemical element distribution in the multi-factor-contaminated technogenic soil. However, the effectiveness of such types of interaction is different for each metal and also depends on the quantitative ratio of substances and soil characteristics, even under a minor change in pH. Two-parameter correlations of HM distribution in sulfate-contaminated soils confirmed the different degrees of involvement of chemical elements in these types of interactions. The results obtained and the identified factors are of applied significance and can be used as the basis for geoecological differentiation of the contaminated soil, as well as for determining local geochemical fields in the technogenesis zone. Areas of advanced research are related to three-dimensional modeling for a more complete study of the cause-and-effect relationships of geochemical parameters.

How to cite: Sarapulova G.I. Geochemical approach in assessing the technogenic impact on soils // Journal of Mining Institute. 2020. Vol. 243 . p. 388-392. DOI: 10.31897/PMI.2020.3.388
Geoecology and occupational health and safety
  • Date submitted
    2020-05-07
  • Date accepted
    2020-05-24
  • Date published
    2020-06-30

Study of the technogenesis of the Degtyarsky mine by audio-magnetotelluric express sounding

Article preview

The audio-magnetotelluric express sounding was performed at four sections crossing the mine field of the currently not functioning Degtyarsky mine. Field measurements were carried out by a universal broadband receiver “OMAR-2m” with active electromagnetic field sensors developed at the Institute of Geophysics UB RAS. Based on the obtained data, deep sections of the electrophysical parameters of the medium – apparent resistivity and effective longitudinal conductivity – are drawn. The nature of the geoelectric structure of the section allows mapping of the major lithochemical contamination plume and identifying the tectonic disturbance zones that drain aggressive mine waters. The mine waters of the Degtyarsky mine are a source of dangerous technogenic pollution. Despite the neutralization of surface runoff, underground routes of acidic water migration occur along tectonic cracks, primarily in the zone of the regional Serovsko-Mauksky fault. Tectonic zones in the mine area contain contaminated fissure-vein water, which is transited at a depth of 70 to over 200 m. Discharging ascending springs of such waters can be located at a great distance from controlled hydrological objects and pollute sources of drinking and household water supply. Urban development in the western and eastern parts of Degtyarsk does not fall within the distribution zone of polluted water. The southern part of the city is located beyond the watershed of the mine water flow area, but a danger of local contamination by tectonic disturbance zones remains possible. The worst environmental situation is observed in the northern outskirts of Degtyarsk, which falls into the area of heavy pollution of underground and surface waters. Besides, acidic fumes from the flooded Kolchedanny quarry can affect the health of city residents when emitted to the atmosphere.

How to cite: Davydov V.A. Study of the technogenesis of the Degtyarsky mine by audio-magnetotelluric express sounding // Journal of Mining Institute. 2020. Vol. 243 . p. 379-387. DOI: 10.31897/PMI.2020.3.378
Geoecology and occupational health and safety
  • Date submitted
    2020-01-10
  • Date accepted
    2020-01-14
  • Date published
    2020-02-25

Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg

Article preview

Soils and plants of Saint Petersburg are under the constant technogenic stress caused by human activity in industrial, residential, and recreational landscapes of the city. To assess the transformed landscapes of various functional zones, we studied utility, housing, and park districts with a total area of over 7,000 hectares in the southern part of the city during the summer seasons of 2016-2018. Throughout the fieldwork period, 796 individual pairs of soil and plant samples were collected.A complex of consequent laboratory studies performed in an accredited laboratory allowed the characterization of key biogeochemical patterns of urban regolith specimens and herbage samples of various grasses. Chemical analyses provided information on the concentrations of polluting metals in soils and plants of different land use zones.Data interpretation and calculation of element accumulation factors revealed areas with the most unfavorable environmental conditions. We believe that a high pollution level in southern city districts has led to a significant degree of physical, chemical, and biological degradation of the soil and vegetation cover. As of today, approximately 10 % of the Technosols in the study area have completely lost the ability to biological self-revitalization, which results in ecosystem malfunction and the urgent need for land remediation.

How to cite: Pashkevich M.A., Bech J., Matveeva V.A., Alekseenko A.V. Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg // Journal of Mining Institute. 2020. Vol. 241 . p. 125-130. DOI: 10.31897/PMI.2020.1.125
Geoecology and occupational health and safety
  • Date submitted
    2015-12-28
  • Date accepted
    2016-02-08
  • Date published
    2016-12-23

Bulk density and aggregate stability assays in percolation columns

Article preview

The restoration technologies in areas degraded by extractive activities require the use of their own mine spoils. Reducing deficiencies in physical properties, organic matter, and nutrients with a contribution of treated sewage sludge is proposed. This experiment was based on a controlled study using columns. The work was done with two mine spoils, both very rich in calcium carbonate. Two sewage sludge doses were undertaken (30,000 and 90,000 kg/ha of sewage sludge) in addition to a different mine spoils used as restoration substrates. The water contribution was provided by a device that simulated short duration rain. The leached water was collected 24 hours after the last application. The experiment saw the bulk density decrease and the aggregate stability increase, thereby improving the structure. The improved soil structure decreases its vulnerability to degradation processes such as erosion and compaction.

How to cite: Khordan M.M., Bek D., Garsiya-Sanches E., Garsiya-Orenes F. Bulk density and aggregate stability assays in percolation columns // Journal of Mining Institute. 2016. Vol. 222 . p. 877-881. DOI: 10.18454/PMI.2016.6.877
Geoecology and occupational health and safety
  • Date submitted
    2015-08-09
  • Date accepted
    2015-10-05
  • Date published
    2016-04-22

Inorganic and organic vitreous foam materials and prospect of environmental cleaning from oil and oil products pollutions

Article preview

The analysis of own experimental materials which are part of the new scientific direction – complex research of physical and chemical regularities of novel inorganic and organic vitreous sorbents and investigation of the oil and oil products absorption processes by that sorbents developed on department of the General and Physical Chemistry of National Mineral Resources University (Mining University) under the leadership of the author of this paper is provided. In particular, specifics of kinetic curves of oil absorption for sorbents with a vitreous surface are experimentally established and theoretically proved by the conducted researches.

How to cite: Kogan V.E. Inorganic and organic vitreous foam materials and prospect of environmental cleaning from oil and oil products pollutions // Journal of Mining Institute. 2016. Vol. 218 . p. 331-338.
Qestion of the geoecology
  • Date submitted
    2013-07-18
  • Date accepted
    2013-09-14
  • Date published
    2014-03-17

Analysis of impact of gas field water bodies

Article preview

Surface and ground water are one of the most environmentally vulnerable elements of the environment. This explains the high rate of migration of chemical elements in the subsurface hydrosphere. Sources of impact on the water environment in the vicinity of the gas field are numerous areal and linear features primary and secondary process, as well as objects related infra-structure.

How to cite: Petrova T.A. Analysis of impact of gas field water bodies // Journal of Mining Institute. 2014. Vol. 207 . p. 206-209.
Qestion of the geoecology
  • Date submitted
    2013-07-28
  • Date accepted
    2013-09-07
  • Date published
    2014-03-17

Application of the method of x-ray fluorescence for carrying out monitoring of the soil and vegetable cover

Article preview

For preservation of soil-vegetable cover quality, the prevention and decrease of negative technogenic impact it is necessary to exercise systematic control of land resources condition. Monitoring as a system of regular supervision over a state of environment for the identification purpose of anthropogenous effects and consequences and acceptance of the appropriate nature protection measures differs a wide set of various options of its realization depending on specific objectives, situations, terms, scales, intensity of influence.

How to cite: Kulikova M.A. Application of the method of x-ray fluorescence for carrying out monitoring of the soil and vegetable cover // Journal of Mining Institute. 2014. Vol. 207 . p. 182-185.
Qestion of the geoecology
  • Date submitted
    2013-07-02
  • Date accepted
    2013-09-09
  • Date published
    2014-03-17

Identification of degradation of soil and vegetable communities testing technogenic loading on materials of space shooting

Article preview

The basic principles on the use of satellite images of different resolution to assess the state of natural soil and plant communities with severe human impacts, primarily atmospheric. Researchers give now various signs of change of qualitative and quantitative structure of vegetation under technogenic loading. However all of them have essential shortcomings that demands continuation of researches in the field for the purpose of increase of reliability of allocation of zones of a breaking of plant communities in an operative mode.

How to cite: Korelskii D.S. Identification of degradation of soil and vegetable communities testing technogenic loading on materials of space shooting // Journal of Mining Institute. 2014. Vol. 207 . p. 175-177.
Qestion of the geoecology
  • Date submitted
    2013-07-06
  • Date accepted
    2013-09-18
  • Date published
    2014-03-17

Comparative analysis of methods of waste disposal biological treatment of the fuel and energy complex

Article preview

For the treatment of domestic and industrial waste water in Russia and abroad widespread biological treatment method. With his undoubted merits it has a significant drawback – the formation of a large amount of excess sludge. In the case of waste water containing high levels of heavy metals, its processing by traditional methods can be hazardous to the environment.

How to cite: Isakov A.E. Comparative analysis of methods of waste disposal biological treatment of the fuel and energy complex // Journal of Mining Institute. 2014. Vol. 207 . p. 168-170.
Geomechanics, geodesy, mine surveying and cadastre
  • Date submitted
    2010-07-23
  • Date accepted
    2010-09-28
  • Date published
    2011-03-21

Sistaining mining in whole different rigidity

Article preview

Studies conducted in the mines «Rostovugol», showed that, for assessing the sustainability of preparatory excavations in the management of sewage treatment works is enough to determine the allowable values of convergence of the roof and ground-level workings and potential energy of elastic deformation of the pillars. These indicators can be used in the coal mines of other basins.

How to cite: Gorshkov L.K., Kokoev S.G. Sistaining mining in whole different rigidity // Journal of Mining Institute. 2011. Vol. 189 . p. 206-209.
Mining
  • Date submitted
    2009-08-13
  • Date accepted
    2009-10-17
  • Date published
    2010-02-01

Selection of optimal scheme of a reclamation of mining damp of the open-cast «Mejdyrechensky»

Article preview

The paper deal with the problem of finding the optimal way of land reclamation for opencast mining company «Mejdurechye», which nowadays is one of the leading companies in Russia in it area. Therefore the question of land reclamation is one of the major issues to adress for this organisation. During the reaserch samples of antropogenic massifs were taken and analyised, which helped to work out a complite plan of restoration. Besides the scheme, a brief review of disadvantages of the suggested plan is available as well as their removal. Special attention is paid to the necessity of biologikal reclaimation because of the low speed of flora recovery.

How to cite: Levchuk I.R. Selection of optimal scheme of a reclamation of mining damp of the open-cast «Mejdyrechensky» // Journal of Mining Institute. 2010. Vol. 186 . p. 61-63.
Problems in geomechanics of technologeneous rock mass
  • Date submitted
    2009-07-24
  • Date accepted
    2009-09-20
  • Date published
    2010-04-22

Investigation of stress-strain state of floor of the dividing mass of deep-lying ore mines at Тalnakh

Article preview

The paper contains the results and analysis of the formation of stress-strain state in blocky structure enclosing the dividing mass. The regularities were established on the influence of blocky structure undermining on stress state of the floor of dividing mass. Recommendations are given for the safe mining in the dividing rock mass.

How to cite: Zvezdkin V.A., Zuev B.Y., Klimkina V.M., Anokhin A.G., Darbinyan T.P. Investigation of stress-strain state of floor of the dividing mass of deep-lying ore mines at Тalnakh // Journal of Mining Institute. 2010. Vol. 185 . p. 81-84.