Submit an Article
Become a reviewer

Search articles for by keywords:
деревянная крепь

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-03-16
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks

Article preview

Operation of vertical mine shafts in complex mining and geological conditions is associated with a number of features. One of them is a radial displacement of the concrete shaft lining, caused by the influence of mining pressure on the stress-strain state of the mine workings. A rigid reinforcing system with shaft buntons fixed in the concrete lining thus experiences elastoplastic deformations, their value increases with time. It results in deviation of conductors from design parameters, weakening of bolt connections, worsening of dynamic properties of geotechnical system “vehicle – reinforcing”, increase of wear rate of reinforcing system elements, increase of risks for creating an emergency situation. The article offers a comprehensive assessment of displacements of characteristic points of the bunton system based on approximate engineering relations, numerical modeling of the deformation process of the bunton system and laser measurements of the convergence of the inner surface of the concrete shaft lining. The method was tested on the example of the reinforcing system of the skip-cage shaft of the potash mine. Displacement of the characteristic points of the reinforcing system is determined by the value of radial displacements of the surface of the concrete shaft lining. Evaluation of the radial displacements was made using monitoring measurements and profiling data. The results obtained make it possible to justify the need and timing of repair works. It is shown that the deterioration of the reinforcing system at different levels occurs at different rates, defined, among other things, by mechanical properties of the rock mass layers located at a given depth.

How to cite: Tarasov V.V., Aptukov V.N., Ivanov O.V. Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks // Journal of Mining Institute. 2024. Vol. 266 . p. 305-315. EDN TNNIZP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-05
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines)

Article preview

It is shown that the creation of the variants of resource-saving systems for the development of long-column mining is one of the main directions for improving the technological schemes for mining operations in the mines of the Kuang Nin coal basin. They provide a reduction in coal losses in the inter-column pillars and the cost of maintaining preliminary workings fixed with anchorage. The implementation of these directions is difficult (and in some cases practically impossible) when tight rocks are lying over the coal seam, prone to significant hovering in the developed space. In the Quang Ninh basin, 9-10 % of the workings are anchored, the operational losses of coal reach 30 % or more; up to 50 % of the workings are re-anchored annually. It is concluded that the real conditions for reducing coal losses and the effective use of anchor support as the main support of reusable preliminary workings are created when implementing the idea put forward at the St. Petersburg Mining University: leaving the coal pillar of increased width between the reused mine working and the developed space and its subsequent development on the same line with the stoping face simultaneously with the reclamation of the reused mine working.

How to cite: Zubov V.P., Phuc L.Q. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines) // Journal of Mining Institute. 2022. Vol. 257 . p. 795-806. DOI: 10.31897/PMI.2022.72
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-04-20
  • Date accepted
    2022-04-26
  • Date published
    2022-07-13

Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass

Article preview

The article presents a numerical solution of the spatial elastic-plastic problem of determining the stability of the tunnel face soils at the intersection of disturbed zones of the soil mass. The relevance of the study is related to the need to take into account the zones of disturbed soils when assessing the face stability to calculate the parameters of the support. Based on the finite element method implemented in the PLAXIS 3D software package, the construction of a finite element system "soil mass-disturbance-face support" and modeling of the intersection of the disturbed zones of the soil mass were performed. To assess the condition of soils, deformation and strength criteria are taken. The deformation criterion is expressed by the value of the calculated displacement of the tunnel contour in the face, and the strength criterion - by the safety coefficient until the maximum values of the stress state are reached according to the Coulomb–Mohr criterion. The results of the study are presented in the form of histograms of the safety coefficient dependences on the distance to the disturbance at different bending stiffness of the face support structure, as well as the isofields of deformation development. The parameters of rockfall formation in the face zone at the intersection of zones of disturbed soils were determined. The local decrease in strength and deformation properties in the rock mass along the tunnel track should be taken into account when assessing the stability of the tunnel face and calculating the parameters of the support. Within the framework of the constructed closed system, a qualitative agreement of the simulation results with the case of a collapse in the face during the construction of the Vladimirskaya-2 station of the St. Petersburg Metro was obtained.

How to cite: Protosenya A.G., Alekseev A.V., Verbilo P.E. Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass // Journal of Mining Institute. 2022. Vol. 254 . p. 252-260. DOI: 10.31897/PMI.2022.26
Geology and geophsics
  • Date submitted
    2010-07-09
  • Date accepted
    2010-09-13
  • Date published
    2011-03-21

Application of the gpr method for investigetion of barring condition and outbarring spaces «Оctyabr’skiy» mine

Article preview

Results of the first application of GPR surveys of a mine cage for the purpose of an estimation of a technical condition barring and outbarring spaces on an example of a ventilating trunk «VC-1», mine «Octyabr’skiy» are considered.

How to cite: Glazunov V.V., Danilev S.M. Application of the gpr method for investigetion of barring condition and outbarring spaces «Оctyabr’skiy» mine // Journal of Mining Institute. 2011. Vol. 189 . p. 15-18.
Geodesy, geomechanics and underground construction
  • Date submitted
    2009-08-22
  • Date accepted
    2009-10-19
  • Date published
    2010-02-01

The substantiation of reinforcing support of preparation mines in the ore massive of the Yakovlevskiy deposit

Article preview

The paper justifies a design of reinforcing mine support of the protective roof at the priority high-grade ore mining site of the Yakovlevskiy deposit. Experience of mine roadway support with the KMP-A3 standing support has been analyzed. A reinforcing support is offered consisting of rock bolts back bracing the ore exposure, which best fits with continuous miner roadheading and consolidating stowing (concrete).

How to cite: Antonov Y.N., Sinegubov V.Y. The substantiation of reinforcing support of preparation mines in the ore massive of the Yakovlevskiy deposit // Journal of Mining Institute. 2010. Vol. 186 . p. 94-98.
Geodesy, geomechanics and underground construction
  • Date submitted
    2009-08-25
  • Date accepted
    2009-10-24
  • Date published
    2010-02-01

Geomechanical substantiation of parameters of the fastening of railway tunnels in the conditions of the North Caucasus

Article preview

The article presents the rationale of temporary supports used in the drilling of new mines, which provides for the construction of model projects of reconstruction of old tunnels. Finite-element method analyzed the changes of stress-strain state containing tunnel complex array during the drilling of new mines. Based on the analysis, a number of findings to explore the possibility of reducing the thickness of the permanent support of new mines in tunnel complex - the new tunnel, and transport and drainage culvert.

How to cite: Belyakov N.A. Geomechanical substantiation of parameters of the fastening of railway tunnels in the conditions of the North Caucasus // Journal of Mining Institute. 2010. Vol. 186 . p. 99-103.
Problems in geomechanics of technologeneous rock mass
  • Date submitted
    2009-07-08
  • Date accepted
    2009-09-19
  • Date published
    2010-04-22

Geomechanical and hydrogeological problems оf the Yakovlevsky deposit development

Article preview

The article deals with geomechanical and hydrogeological problems under the Yakovlevsky ore deposit development including variations in strength properties. The estimation of feasible underground water inrush inside the mining excavation is done. In situ results of ore strata deformation around excavation are discussed. Numerical modeling of stress and strain in the waterproofing ore pillar due to partially backfilling of excavation is carried out.

How to cite: Trushko V.L., Protosenya A.G., Dashko R.E. Geomechanical and hydrogeological problems оf the Yakovlevsky deposit development // Journal of Mining Institute. 2010. Vol. 185 . p. 9-18.
Drilling
  • Date submitted
    2008-10-21
  • Date accepted
    2008-12-12
  • Date published
    2009-12-11

Assessment of stress-strain state of temporary support during constructhion of station tunnels of the metro

Article preview

In-situ testing technique of temporary support is given. The values of stress and normal force in arch and sides of steel support are shown. Determination of vertical load magnitude is done. It was determined that vertical load on support decreases by 1,54 times, if lag of support installation from the face is16 m.

How to cite: Maslak V.A. Assessment of stress-strain state of temporary support during constructhion of station tunnels of the metro // Journal of Mining Institute. 2009. Vol. 183 . p. 300-302.
Mining
  • Date submitted
    1951-07-11
  • Date accepted
    1951-09-18
  • Date published
    1952-12-23

Development of thin and medium-thickness rotating seams without the use of timber supports

Article preview

The main disadvantage of the existing methods of developing thin and medium-thick steep coal seams is the use of wooden supports in the working faces. Support of the working faces is carried out exclusively by hand and is the most dangerous, difficult and labor-intensive operation. Thus, labor costs for support, timber delivery and control of rock pressure usually make up 50 to 80% of the total labor costs in the working face (see article). A miner spends about two thirds of the net working time on support. If we also take into account timber delivery and work on managing rock pressure (installation of organ support, etc.), then the total time spent on these operations, including support, will amount to approximately 80% of the total labor costs in the working face for coal mining. In the Donbass, chipping hammers are predominantly used, which determines a significantly higher labor intensity of coal mining work. Therefore, work related to support and rock pressure control here makes up approximately 50-60% of the total labor costs in the working face. But in the future, in connection with the introduction of combines, the specific weight of these works will increase significantly and will also reach 80-85%.

How to cite: Makhno E.Y. Development of thin and medium-thickness rotating seams without the use of timber supports // Journal of Mining Institute. 1952. Vol. 27 № 1. p. 91-124.
Mining
  • Date submitted
    1948-07-10
  • Date accepted
    1948-09-24
  • Date published
    1949-11-04

Determination of the density of the stoping zone fastening

Article preview

When designing the standards for the consumption of timber for coal mining, it is especially important to correctly determine the consumption of timber for the lining of workings, which is from 50 to 70% of the total timber consumption for coal mining. The purpose of this work is to attempt to provide a method for the theoretical determination of the required density of lining of working faces based on the theory of limiting and equivalent spans developed by V.D. Slesarev. In accordance with this goal, the first two paragraphs of the work provide a brief exposition of the theory of limiting and equivalent spans according to V.D. Slesarev; § 3 provides an application of this theory to the issue of determining the magnitude of rock pressure on the lining of workings with a constant width; § 4 presents the method of successive approximations proposed by the author for calculating the expected pressure on the lining of working faces; § 5 provides a formula for determining the required density of lining of a working face; § 6 provides the results of calculating the pressure according to the proposed method for a specific case of practice—the 1st eastern face at Mine B in the Donetsk Basin.

How to cite: Bokii O.B. Determination of the density of the stoping zone fastening // Journal of Mining Institute. 1949. Vol. 23 . p. 3-24.