Submit an Article
Become a reviewer
А. F. Zakharevich
А. F. Zakharevich
associate professor
associate professor

Co-authors

Articles

Article
  • Date submitted
    1973-09-27
  • Date accepted
    1973-11-27

About the tension in the ceiling

Article preview

The study of the stress state in the ceilings and the related issue of determining their durable dimensions are still relevant in the mining industry. As is known, the stability of the ceiling is determined by the tensile stresses that occur in it, the greatest value of which is achieved on the production circuit. The magnitude of these stresses depends on the thickness of the ceiling, on the elastic properties of the roofing rocks, on the depth of the excavation, and other reasons...

How to cite: Zakharevich A.F. About the tension in the ceiling // Journal of Mining Institute. 1974. Vol. 52. Iss. 3. p. 42-53.
Article
  • Date submitted
    1967-09-16
  • Date accepted
    1967-11-28

Determination of the natural frequency of an inertial pendulum with a load at large oscillations

Article preview

The modern development of rock mechanics has put forward the important task of studying the effect of strain rate on rock properties. The study of rock fracture processes under dynamic loading is of great importance for the improvement of mining technology. Mechanical properties under dynamic loading is important to know when designing mining machines, drilling wells at high speeds, destruction of rocks by explosion.

How to cite: Burshtein L.S., Vilenskaya Z.M., Zakharevich A.F. Determination of the natural frequency of an inertial pendulum with a load at large oscillations // Journal of Mining Institute. 1968. Vol. 48. Iss. 3. p. 64-67.
Article
  • Date submitted
    1966-07-06
  • Date accepted
    1966-09-06

To the theory of vibro-loading machines

Article preview

In the present article the basic laws of operation of viroploading machine type 2PNV-1, the design of which is developed by Gipronickel.The working body of the machine is a vibroloading chute. The impact of the vibro tray, embedded in the stack of rock, causes vibrofluidity in it, as a result of which the rock enters the tray and moves up to the transfer conveyor ...

How to cite: Zhuravlev P.A., Zakharevich A.F. To the theory of vibro-loading machines // Journal of Mining Institute. 1967. Vol. 54. Iss. 1. p. 65-71.
Chronicle
  • Date submitted
    1963-09-21
  • Date accepted
    1963-11-27

Prof. N. P. Neronov

Article preview

The year 1963 marked 40 years of scientific and pedagogical activity of the Head of the Department of Theoretical Mechanics, Doctor of Technical Sciences, Professor Nikolai P. Neronov.

How to cite: Zhuravlev P.A., Zakharevich A.F. Prof. N. P. Neronov // Journal of Mining Institute. 1964. Vol. 44. Iss. 3. p. 3-8.
Article
  • Date submitted
    1963-09-29
  • Date accepted
    1963-11-28

Review of theoretical studies on determination of dynamic forces in mine hoisting ropes

Article preview

The article aims to outline the history of the successive development of the theory of determining dynamic forces in mine hoisting ropes, noting all the most significant points reflected in the works of various teams of the USSR, and omitting some interesting works relating to issues of private or controversial nature.

How to cite: Zhuravlev P.A., Zakharevich A.F. Review of theoretical studies on determination of dynamic forces in mine hoisting ropes // Journal of Mining Institute. 1964. Vol. 44. Iss. 3. p. 9-16.
Article
  • Date submitted
    1960-09-21
  • Date accepted
    1960-11-22

О РАСПРЕДЕЛЕНИИ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД

Article preview

1. В настоящей статье имеется в виду подробнее рассмотреть во­прос о распределении -напряжений в массиве горных пород, который принимается за однородную упругую изотропна щуюся закону Гука. Удельныи вес у породы считается постоянным. Принято, что горная порода на рассма­триваемом участке ограни­чена сверху горизонтальной плоскостью, к которой не приложено никаких сил.

How to cite: Zhuravlev P.A., Zakharevich A.F. // Journal of Mining Institute. 1961. Vol. 39. Iss. 3. p. 111.
Article
  • Date submitted
    1960-09-14
  • Date accepted
    1960-11-17

О ВЛИЯНИИ НАПУСКА НА НАТЯЖЕНИЕ КАНАТА

Article preview

При подъеме груза, лежащего на неподвижном основании, канат иногда не только не нагружен, но и имеет напуск. Прак­тически важно определить при этих условиях наибольшее натяжение каната в первые моменты приведения барабана во враща­тельное движение. Этому вопросу посвящены работы В. В. Георгиевской, которая процесс поднятия груза разбивает на три этапа: 1) выбор напуска каната; 2) сня­тие груза с неподвижного основания; 3) подъем груза. Предполагается, что на всех трех этапах барабан, на ко­торый навивается канат, вращается равноускоренно, выйдя из состояния покоя. Изменением длины каната и влиянием внутренних сопротивлений в канате автор пренебрегает.

How to cite: Zhuravlev P.A., Zakharevich A.F. // Journal of Mining Institute. 1961. Vol. 39. Iss. 3. p. 107.
Article
  • Date submitted
    1960-09-20
  • Date accepted
    1960-11-21

ПРИБЛИЖЕННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ НАИБОЛЬШЕГО НАТЯЖЕНИЯ ШАХТНОГО КАНАТА ЗА ВЕСЬ ПЕРИОД ПОДЪЕМА

Article preview

Приближенное определение натяжения подъемных шахтных кана­тов применяется с целью преодоления двух основных трудностей, воз­никающих при обосновании расчета канатов на прочность. Если с изве­стным приближением можно оправдать применение закона Гука для натяжения каната, принимаемого в теории за идеально упругую нить постоянного сече­ния, то для учета внутренних сопротивлений в ка­нате, так же как и в прямолинейном однородном стержне, вполне обоснованной формулы нет. Источ­ник второй трудности заключен в сложной форме од­ного из краевых условий той задачи математической физики о продольных колебаниях упругой нити пере­менной длины с грузом на нижнем конце, к которой приводится определение натяжения подъемных шахт­ных канатов. Речь идет о верхнем конце каната, ко­торый благодаря навиванию на барабан и предпола-» гаемому отсутствию скольжения по барабану должен иметь заданную скорость, совпадающую со скоростью точек наружной поверхности вращающегося бара­бана.

How to cite: Zhuravlev P.A., Zakharevich A.F. // Journal of Mining Institute. 1961. Vol. 39. Iss. 3. p. 21.
Article
  • Date submitted
    1960-09-12
  • Date accepted
    1960-11-24

К ЧИСЛОВОЙ ОЦЕНКЕ НАИБОЛЬШЕГО НАТЯЖЕНИЯ ШАХТНОГО ПОДЪЕМНОГО КАНАТА В ТОЧКЕ ПОДВЕСА ГРУЗА ПРИ РАВНОМЕРНОМ ВРАЩЕНИИ БАРАБАНА

Article preview

Числовая оценка натяжения каната имеет большое практическое значение, но далека еще от своего полного завершения. В настоящей работе предпринята попытка оценить натяжение каната в точке под­веса груза в период равномерного вращения барабана при условии,, что этому периоду предшествовал период равноускоренного вращения барабана, сопровождавшийся с самого начала подъема груза колеба­тельным движением системы. Вследствие действия сил внутреннего со­противления эти колебания будут затухающими, и к концу периода, равноускоренного вращения барабана все точки вертикальной части каната и груз получат одинаковые ускорения, равные тангенциальному” ускорению точек поверхности барабана. В начале равномерного вра­щения барабана ввиду изменения режима вращения колебания си­стемы возобновляются и опять проявляются силы внутренних сопро­тивлений. Однако их можно не учитывать, если рассматривать дви­жение системы в промежутке времени, близком к начальному.

How to cite: Zhuravlev P.A., Zakharevich A.F. // Journal of Mining Institute. 1961. Vol. 39. Iss. 3. p. 15.
Article
  • Date submitted
    1958-07-18
  • Date accepted
    1958-09-30

Material movement in the dredge scoop

Article preview

When designing a dredge and selecting the main parameters that determine its operation, an important issue is the choice of angular speed of rotation of the motor and the length of the bottom of the scoop. For normal operation of the dredge it is necessary to select these parameters so that the material, pouring out of the scoop, falls into the receiving device. To solve this issue, the movement of material along the bottom of the scoop should be studied.

How to cite: Zakharevich A.F., Shkadov R.I. Material movement in the dredge scoop // Journal of Mining Institute. 1959. Vol. 39. Iss. 1. p. 164-168.
Article
  • Date submitted
    1957-09-23
  • Date accepted
    1957-11-16

Distribution of stresses in a rock massif with a horizontal excavation of circular cross section

Article preview

In the present work, the question of stress distribution from own weight in a rock massif with an unsupported horizontal excavation of circular cross-section and a free day surface is considered.

How to cite: Zhuravlev P.A., Zakharevich A.F. Distribution of stresses in a rock massif with a horizontal excavation of circular cross section // Journal of Mining Institute. 1958. Vol. 36. Iss. 3. p. 101-105.
Article
  • Date submitted
    1955-09-26
  • Date accepted
    1955-11-01

On the theory of vibrating machines

Article preview

The work aims to find out quantitatively and qualitatively the main circumstances of motion of some vibrating machine intended for transportation and sorting of material, and both pre-resonance and post-resonance modes of operation of this machine are considered.The problem is reduced to integration of a system of linear differential equations with variable coefficients. Integration of the system is carried out by means of decomposition of unknown functions in series by powers of a small parameter.The obtained integrals make it possible to determine the frequencies of free oscillations of the material system under consideration, and hence the conditions of resonance. The totality of the obtained data makes it possible to calculate the strength of the vibrating parts of the structure and to give such ratios of parameters that allow to reduce the angular displacements of its two frames, which are undesirable in the proper functioning of the vibrating machine

How to cite: Neronov N.P., Zakharevich А.F., Zhuravlev P.A. On the theory of vibrating machines // Journal of Mining Institute. 1956. Vol. 33. Iss. 3. p. 3-36.
Article
  • Date submitted
    1955-09-21
  • Date accepted
    1955-11-23

Bending of a homogeneous layer under the action of its own weight

Article preview

Let’s consider a homogeneous isotropic prismatic layer of rectangular cross-section under the action of its own weight. Let the layer extend infinitely in the direction perpendicular to the cross-section. Two sides of the cross section are embedded and the other two sides are free (Fig. 1). In this case, the layer will be under plane strain conditions. Let us place the origin at the center of gravity of the layer cross-section and denote: layer height 2c, layer width 2l, weight per unit volume of material g, elastic constants E, n, G.

How to cite: Zakharevich А.F. Bending of a homogeneous layer under the action of its own weight // Journal of Mining Institute. 1956. Vol. 33. Iss. 3. p. 62-89.
Article
  • Date submitted
    1953-09-24
  • Date accepted
    1953-11-20

Stresses in a rotating rod with a special cross-section shape

Article preview

The problem of stress distribution in a prismatic rod rotating around one of the main central axes of inertia of the cross-section is reduced to solving two independent problems. One of them does not depend on the shape of the cross-section contour and is solved once. The second problem depends on the shape of the cross-section contour and is reduced to determining the plane strain state. With an accuracy quite sufficient for practice, the value of the main design stress can be obtained using the simplified formula (7) (see article). Assuming in the obtained expressions for stresses a = 0 and bр = r, we obtain stresses for a rod of circular cross-section.

How to cite: Zakharevich A.F. Stresses in a rotating rod with a special cross-section shape // Journal of Mining Institute. 1954. Vol. 29. Iss. 3. p. 61-66.
Article
  • Date submitted
    1951-07-25
  • Date accepted
    1951-09-17

Stress distribution in the rim of a rapidly rotating flywheel

Article preview

Neglecting the influence of the spokes, we will consider the flywheel as a ring with a circular meridional cross-section (Fig. 1). Let r1 be the cross-section radius; r2 be the radius of the circle containing the cross-section centers. We will take the oz axis as the axis of rotation and assume that the angular velocity is constant and sufficiently large. Using the kinetostatic method, we will apply an inertial force to each element of the rod and determine its elastic equilibrium. To simplify the boundary conditions, we will move to bipolar coordinates.

How to cite: Zakharevich A.F. Stress distribution in the rim of a rapidly rotating flywheel // Journal of Mining Institute. 1952. Vol. 26. Iss. 1. p. 153-160.
Article
  • Date submitted
    1950-07-11
  • Date accepted
    1950-09-20

On the problem of stress distribution in a rotating rod

Article preview

In our work "Distribution of stresses in rotating prismatic rods" the problem of determining the stresses in a rod rotating about an axis lying in the plane of the cross-section is solved. This question is reduced to solving two independent problems: the first of them does not depend on the shape of the cross-section contour and can be solved once; the second is reduced to considering a plane strain state. The general solution of the equations of elasticity theory was obtained after long and painstaking calculations by the method of E. Almanzi. We will show that this solution can be easily obtained using the general integral of the equations of elasticity theory in the Papkovich-Grodsky form.

How to cite: Zakharevich A.F. On the problem of stress distribution in a rotating rod // Journal of Mining Institute. 1951. Vol. 25. Iss. 1. p. 137-138.
Article
  • Date submitted
    1948-07-22
  • Date accepted
    1948-09-01

Stress distribution in rotating prismatic rods

Article preview

In this paper, we solve the problem of stress distribution in a rod rotating about an axis lying in the plane of the cross-section. We show that in this case the problem is reduced to two completely independent problems. The first of these problems does not depend on the shape of the cross-section contour and can be solved once. The second problem depends significantly on the shape of the contour and coincides with a flat strain state, with the conditions at the ends being satisfied in the sense of Saint-Venant. In particular, we consider the cases of rotation of a hollow round shaft and a rod of elliptical cross-section.

How to cite: Zakharevich A.F. Stress distribution in rotating prismatic rods // Journal of Mining Institute. 1949. Vol. 23. p. 213-221.