Submit an Article
Become a reviewer

Search articles for by keywords:
petroleum basins

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-22
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

On peculiarities of composition and properties of ancient hydrocarbon source rocks

Article preview

Precambrian rocks are widespread within all continents of the Earth; that said, sedimentary associations of these deposits are of special interest in search for oil and gas fields. A wide range of paleontological, lithological and geochemical methods is utilized for conducting integrated geological-geochemical analysis and evaluating the initial hydrocarbon generating potential of organic matter of Precambrian source rocks. Investigated were peculiarities of depositional environments of the organic matter, specific features of its composition in sedimentary rocks and its generation characteristics. Own research efforts were performed in combination with generalization of other authors’ publications focused on Precambrian sequences enriched in organic matter – their occurrence, isotopic and biomarker characteristics and realization schemes of the hydrocarbon generation potential of Precambrian organic matter in the process of catagenesis. Geochemical peculiarities of initial organic matter are illustrated on various examples, type of the organic matter is determined together with the character of evolution of realization of its initial generation potential.

How to cite: Bolshakova M.A., Sitar K.A., Kozhanov D.D. On peculiarities of composition and properties of ancient hydrocarbon source rocks // Journal of Mining Institute. 2024. Vol. 269. p. 700-707. EDN MKTALQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-10-22
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

The mechanism and thermodynamics of ethyl alcohol sorption process on activated petroleum coke

Article preview

The low-quality petcoke does not find qualified application and is stockpiled at refineries or used as solid fuel. One of the promising ways to use low-quality petroleum coke is its physical or chemical activation in order to obtain a highly porous carbon material that can be used as a catalyst carrier, adsorbent, base for electrodes, etc. The possibility of using petroleum coke to produce sorbent for organic compounds was studied. The activated petroleum cake was obtained by chemical activation with KOH, a specific surface area is 1218 m2/g. Sorption of ethyl alcohol was studied at temperatures 285, 293 and 300 K. It is a physical process proceeding mainly in pores of activated petroleum coke, also sorption can be described as a reversible exothermic process. The effective Gibbs energy at a temperature of 293 K is –12.74 kJ/mol, the heat of sorption is –26.07 kJ/mol. The obtained data confirm that porous carbon material obtained from petroleum coke can be used as sorbent for ethanol at room temperature. For example, for adsorption of bioethanol from the effluent of the fermentation process or for purification of wastewater from organic compounds.

How to cite: Litvinova T.E., Tsareva A.A., Poltoratskaya M.E., Rudko V.A. The mechanism and thermodynamics of ethyl alcohol sorption process on activated petroleum coke // Journal of Mining Institute. 2024. Vol. 268. p. 625-636. EDN YUGLTO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-05-17
  • Date accepted
    2023-08-17
  • Date published
    2023-10-27

Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia

Article preview

Russia is one of the world's leading steel producers, while about 33 % of production comes from the scrap remelted in arc steelmaking furnaces. The graphitized electrodes of SHP and UHP grades, mainly consisting of needle coke, are used for high current loads and temperatures in furnaces. USA, Japan, Korea, and China are focused on needle coke production, where coal (tar and pitch) and petroleum (decantoil), by-products of metallurgical factories and oil refineries, are used as raw materials. Russia's annual demand for needle coke is approximately 100 thousand tons, but all of it is covered by imports. Russia's raw material potential, established by the authors of the article, is more than 5 million tons per year and includes decantoil, coal tar and pitch, and heavy pyrolysis tar. The results of obtaining needle coke from decantoil and heavy pyrolysis tar are given below. The prototypes of needle coke were produced on specially designed delayed coking laboratory units (loading up to 0.25 and 80 kg). Raw materials were modified according to the original technology of Saint Petersburg Mining University, the convergence of target properties of which is confirmed by the results of quality analysis of the obtained needle coke, including after 100-fold scaling. The electrodes were molded from the obtained coke. After standardized stages of firing, mechanical processing and graphitization at 2,800-3,000 °C, the coefficient of linear thermal expansion was less than 1 × 10–6 К–1, and the value of specific electrical resistance was 7.1-7.4 μOhm, which proves that the obtained carbon material corresponds in quality to Japanese analogues and Super Premium needle coke.

How to cite: Rudko V.А., Gabdulkhakov R.R., Pyagai I.N. Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia // Journal of Mining Institute. 2023. Vol. 263. p. 795-809. EDN KYNHWL
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-19
  • Date accepted
    2022-05-13
  • Date published
    2022-07-13

Development of a pump-ejector system for SWAG injection into reservoir using associated petroleum gas from the annulus space of production wells

Article preview

Implementation of SWAG technology by means of water-gas mixtures is a promising method of enhanced oil recovery. The use of associated petroleum gas as a gas component in the water-gas mixture allows to significantly reduce the amount of irrationally consumed gas and carbon footprint. Relevant task is to choose a simple, reliable and convenient equipment that can operate under rapidly changing operating conditions. Such equipment are pump-ejector systems. In order to create water-gas mixture it is proposed to use associated gas from the annulus space. This solution will reduce the pressure in the annulus space of the production well, prevent supply disruption and failure of well equipment. The paper presents a principal technological scheme of the pump-ejector system, taking into account the withdrawal of gas from the annulus space of several production wells. The layout of the proposed system enables more efficient implementation of the proposed technology, which expands the area of its application. Experimental investigations of pressure and energy characteristics of the ejector have been carried out. Analysis of the obtained data showed that it was possible to increase the value of maximum efficiency. The possibility of adapting the system in a wide range of changes in operating parameters has been established. Recommendations on selection of a booster pump depending on the values of working pressure and gas content are given.

How to cite: Drozdov A.N., Gorelkina Е.I. Development of a pump-ejector system for SWAG injection into reservoir using associated petroleum gas from the annulus space of production wells // Journal of Mining Institute. 2022. Vol. 254. p. 191-201. DOI: 10.31897/PMI.2022.34
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-08
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry

Article preview

The analysis of the main environmental consequences of leaks and local spills of petroleum products at the enterprises of the mineral resource complex is presented. It is established that the problem of soil contamination with petroleum products at the facilities of the mineral resource complex and enterprises of other industries is caused by significant volumes of consumption of the main types of oil products. Based on the results of the author's previous field research, a series of experiments was carried out, consisting in modeling artificial soil pollution with petroleum products such as gasoline, diesel fuel, highly refined oil, motor oil, and transmission oil, followed by their purification by heat treatment at temperatures of 150, 200, and 250 °C. The 250 °C limit of the heating temperature was set due to the need to partially preserve the structure and quality of the soil after heat treatment to preserve its fertility. When the processing temperature rises to 450 °C, all humates are completely burned out and, as a result, productivity is lost. Confirmation is provided by the results of experiments to determine the humus content in uncontaminated soil and soil treated at different temperatures. It was found that at a maximum processing temperature of 250 °C, about 50 % of the initial organic carbon content is preserved. According to the results of the conducted experimental studies, the dependences of the required processing temperature on the concentration of petroleum products to reduce the concentration of petroleum products to an acceptable level have been established. The methodology of thermal desorption cleaning of soils with varying degrees of contamination at enterprises of the mineral resource complex is presented.

How to cite: Pashkevich M.A., Bykova M.V. Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry // Journal of Mining Institute. 2022. Vol. 253. p. 49-60. DOI: 10.31897/PMI.2022.6
Oil and gas
  • Date submitted
    2021-04-26
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Study of the dynamics for gas accumulation in the annulus of production wells

Article preview

Accumulation of associated petroleum gas in the annulus is one of the negative factors that impede the intensification of mechanized oil production. An increase in annular gas pressure causes growth of bottomhole pressure, a decrease in back pressure to the formation and the inflow of formation fluid. In addition, accumulation of gas in the annulus leads to displacement and a decrease in the liquid level above the submersible pump. Insufficient level of the pump submersion (rod or electric submersible) causes a number of complications in the operation of mechanized production units associated with overheating of the elements in pumping units. Therefore, the development of technologies for optimizing the gas pressure in the annulus is relevant. Method for calculating the intensity of gas pressure increase in the annulus of production wells operated by submersible pumps has been developed. Analytical dependence for calculating the time interval of gas accumulation in the annulus, during which the dynamic level decreases to the pump intake, is obtained. This value can be used to estimate the frequency of gas withdrawal from the annulus using compressors. It has been found that the rate of increase in annular gas pressure in time increases non-linearly with a rise in the gas-oil ratio and a decrease in water cut, and also linearly increases with a rise in liquid flow rate. Influence of the operating (gas-oil ratio) and technological (value of the gas pressure maintained in the annulus) factors on the flow rate of the suspended reciprocating compressor driven by the beam engine, designed for forced withdrawal and redirection of the annular gas into the flow line of the well is analyzed.

How to cite: Urazakov K.R., Belozerov V.V., Latypov B.M. Study of the dynamics for gas accumulation in the annulus of production wells // Journal of Mining Institute. 2021. Vol. 250. p. 606-614. DOI: 10.31897/PMI.2021.4.14
Oil and gas
  • Date submitted
    2019-04-03
  • Date accepted
    2022-12-02
  • Date published
    2020-02-25

Influence of parameters of delayed asphalt coking process on yield and quality of liquid and solid-phase products

Article preview

Paper studies the effect of excess pressure during delayed coking of asphalt, obtained by propane deasphaltization of tar, on yield and physical and chemical properties of hydrocarbon fuels' components and solid-phase product – petroleum coke. Asphalt was coked at a temperature of 500 °C and excess pressure of 0.15-0.35 MPa in a laboratory unit for delayed coking of periodic action. Physical and chemical properties of raw materials and components of light (gasoline), medium (light gasoil), and heavy (heavy gasoil) distillates obtained during experimental study were determined: density, viscosity, coking ability, sulfur content, iodine number, pour points, flash points, fluidity loss and fractional composition. Quantitative group hydrocarbon and microelement compositions and properties of obtained samples of petroleum coke (humidity, ash content, volatiles' yield, sulfur content, etc.) were also studied. Comparative assessment of their quality is given in accordance with requirements of GOST 22898-78 “Low-sulfur petroleum coke. Specifications”. In addition, patterns of changes in excess coking pressure on yield and quality indicators of distillate products and petroleum coke were revealed. With an increase in excess pressure of coking process from 0.15 to 0.35 MPa, content of paraffin-naphthenic hydrocarbons in light and heavy gasoils of delayed coking decreases. Common pattern in asphalt coking is an increase in yield of coke and hydrocarbon gas with an increase in excess pressure from 0.15 to 0.35 MPa.

How to cite: Kondrasheva N.K., Rudko V.A., Nazarenko M.Y., Gabdulkhakov R.R. Influence of parameters of delayed asphalt coking process on yield and quality of liquid and solid-phase products // Journal of Mining Institute. 2020. Vol. 241. p. 97-104. DOI: 10.31897/PMI.2020.1.97
Oil and gas
  • Date submitted
    2019-03-13
  • Date accepted
    2019-05-18
  • Date published
    2019-08-23

Improving the Operation of Pump-ejector Systems at Varying Flow Rates of Associated Petroleum Gas

Article preview

Application of pump-ejector systems for the utilization of associated petroleum gas reduces the negative environmental impact of its flaring, and also allows the implementation of a promising method of water-gas stimulation of the formation, which effectively increases oil recovery. Equally feasible is the use of pump-ejector systems in the operation of oil wells with a high gas factor, low bottomhole pressures to increase production rates and increase the turnaround period. A significant change in the flow rate of associated petroleum gas over time is a serious problem for the efficient operation of pump-ejector systems for the utilization of associated petroleum gas. To ensure the rational operation of the pump-ejector system under the condition of a variable flow rate of associated petroleum gas, experimental studies of a liquid-gas ejector characteristics were carried out. The article presents the results of the research, obtained pressure-energy characteristics of the investigated jet apparatus at various values of the working stream pressure before the ejector nozzle. The possibility of adapting the operation of pump-ejector systems to changes in the flow rate of the pumped gas, regulated by the working pressure and fluid flow rate through the nozzle is revealed. To successfully change the operation of the pump-ejector system, the possibility of frequency regulation of the pump shaft's rotation at changing gas flow rates in a small range of values is considered. With a large difference in the values of the possible flow rate of associated petroleum gas, it is recommended that frequency regulation should be supplemented by periodic short-term operation. The possibility of increasing the efficiency of the pump-ejector system when using salt solutions with a concentration that contributes to the suppression of bubble coalescence is noted.

How to cite: Drozdov A.N., Gorbyleva Y.A. Improving the Operation of Pump-ejector Systems at Varying Flow Rates of Associated Petroleum Gas // Journal of Mining Institute. 2019. Vol. 238. p. 415-422. DOI: 10.31897/PMI.2019.4.415
Economical aspects in the developments оf fuel & energy complex
  • Date submitted
    2008-11-01
  • Date accepted
    2009-01-14
  • Date published
    2009-12-11

The decision of problem of rational use associated petroleum gas: administrative aspect

Article preview

The kernel of the problem of associated petroleum gas rational use in Russia is stated in the article; the analyses of reasons that are obstacles in the way of associated petroleum gas utilization is fulfilled; the main directions of economic mechanism based on state-private cooperation in the sphere of production and use of associated petroleum gas are offered.

How to cite: Solovyova E.A., Ledovskikh V.A. The decision of problem of rational use associated petroleum gas: administrative aspect // Journal of Mining Institute. 2009. Vol. 184. p. 174-179.
Geology, search and prospecting of mineral deposits
  • Date submitted
    2008-10-22
  • Date accepted
    2008-12-14
  • Date published
    2009-12-11

Peculiarities of structure and comparative analysis of oil-and-gas basins in the Pacific segment of lithosphere

Article preview

Comparative analysis was carried out for oil-and-gas-bearing basins of young and oldland platforms of the Pacific segment. Previously the same kind of analysis had been realized for the Atlantic segment of lithosphere. Obtained results confirm the unique geological structure and oil-and-gas capacity of Siberian platform, by these features it differs from all other cratons in the whole world.

How to cite: Archegov V.B. Peculiarities of structure and comparative analysis of oil-and-gas basins in the Pacific segment of lithosphere // Journal of Mining Institute. 2009. Vol. 183. p. 71-77.
Hydrogeology, engineering geology
  • Date submitted
    2008-10-19
  • Date accepted
    2008-12-21
  • Date published
    2009-12-11

Modern problems in regional monitoring оf underground waters

Article preview

The new situation with the carrying out of monitoring of underground waters on regional level was mainly caused by two reasons: 1) new regulations on the preservation of the environment were approved; the present water Regulations are being renewed; 2) studying of regime-forming factors of underground waters (geological, cosmic, climatic, biological, hydrological and technogenic) testify to the urgent necessity of introducing certain amendments into the system and maintainance of monitoring of underground waters.

How to cite: Kiryukhin V.A., Norova L.P. Modern problems in regional monitoring оf underground waters // Journal of Mining Institute. 2009. Vol. 183. p. 196-204.