Submit an Article
Become a reviewer

Search articles for by keywords:
grinding

Metallurgy and concentration
  • Date submitted
    2022-04-20
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

Iron ore beneficiation technologies in Russia and ways to improve their efficiency

Article preview

Increasing the efficiency of crushing circuits is associated with a decrease in the particle size of finely crushed ore and the use of dry magnetic separation of crushed ore. Reducing grinding costs is achieved by using drum mills jointly with mills of other designs. The use of automation systems, slurry demagnetization, technologies with staged concentrate separation, and beneficiation and fine screening in a closed grinding cycle lead to a reduction in grinding costs. The main industrial technology for improving the quality of concentrate is its additional beneficiation using regrinding, fine screening, flotation, and magnetic-gravity separators. Increasing the integrated use of iron ore raw materials is associated with an increase in the yield of iron concentrate and the production of hematite concentrate during the beneficiation of hematite-magnetite ores and ilmenite concentrate during the beneficiation of titanomagnetite ores. Incremented concentrate yield is possible by using magnetic separators with an increased magnetic induction up to 0.25-0.5 T in the first stages of beneficiation. To obtain hematite and ilmenite concentrates, combined technologies can be used, including fine screening, high-gradient magnetic, gravity, flotation, and electrical separation.

How to cite: Pelevin A.E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency // Journal of Mining Institute. 2022. Vol. 256 . p. 579-592. DOI: 10.31897/PMI.2022.61
Metallurgy and concentration
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Morphometric parameters of sulphide ores as a basis for selective ore dressing

Article preview

To assess the possibility of selective disintegration and reduction of overgrinding of hard-to-reproduce ores, optical microscopic and X-ray microtomographic studies were carried out and quantitative characteristics of morphological parameters of disseminated and rich cuprous ore samples from Norilsk-type Oktyabrsky deposit were identified. Among quantitative morphological parameters the most informative are area, perimeter, edge roughness, sphericity, elongation and average grain spacing for disseminated copper-nickel ores; area, perimeter, edge roughness and elongation for rich cuprous ores. The studied parameters are characterized by increased values and dispersion in ore zones, which is especially important for fine-grained ores, which are difficult to diagnose by optical methods. Three-dimensional modelling of the internal structure of sulphide mineralisation samples was carried out using computed X-ray microtomography, which allows observation of quantitative parameters of grains, aggregates and their distribution in the total rock volume and interrelationship with each other. The evaluation of rock pore space by computer microtomography made it possible to compare the results obtained with the strength characteristics of rocks and ores, including those on different types of crushers. The obtained quantitative characteristics of structural-textural parameters and analysis of grain size distribution of ore minerals allow us to evaluate the possibility of applying selective crushing at various stages of ore preparation

How to cite: Duryagina A.M., Talovina I.V., Lieberwirth H., Ilalova R.K. Morphometric parameters of sulphide ores as a basis for selective ore dressing // Journal of Mining Institute. 2022. Vol. 256 . p. 527-538. DOI: 10.31897/PMI.2022.76
Metallurgy and concentration
  • Date submitted
    2022-05-17
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Methodological substantiation of the choice for optimal modes of equipment operation during the stage-wise concentrate removal in iron ores beneficiation

Article preview

The urgent task of improving the quality of iron ore concentrates was studied. We propose to use the stage-wise removal of the concentrate by combining fine screening, regrinding, and magnetic-gravity separation. Exemplified by magnetite ore from the Stoilensky GOK, a scientific and methodological approach to the search for optimal separation parameters and modes was substantiated. It includes several stages: studying the particle size distribution and release of useful components in the feed product to select classification parameters; a series of experiments on grinding oversize products to diverse sizes; beneficiation of the obtained products by MG separation. To select the optimal parameters of ore preparation, an analysis of the beneficiation efficiency was used, which is calculated according to the Hancock – Luyken criterion. The results of the research are experimental dependences that connect the process parameters of beneficiation with those of fine vibratory screening. For the studied ferruginous quartzite ore processed at the Stoilensky GOK, the obtained dependences can be described by a second-order polynomial with a high accuracy of approximation. The best performance is achieved with a particle size of 0.1 mm: Fe tot content in the concentrate is 69.7 %, recovery is 85 %, classification efficiency is 80.4 %. The top size of the product in this case is 0.076 mm, which corresponds to 70-73 % grinding size of –0.045 class.

How to cite: Opalev A.S., Alekseeva S.A. Methodological substantiation of the choice for optimal modes of equipment operation during the stage-wise concentrate removal in iron ores beneficiation // Journal of Mining Institute. 2022. Vol. 256 . p. 593-602. DOI: 10.31897/PMI.2022.80
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-10
  • Date published
    2022-11-03

Monitoring of grinding condition in drum mills based on resulting shaft torque

Article preview

Grinding is the most energy-intensive process among all stages of raw material preparation and determines the course of subsequent ore beneficiation stages. Level of electricity consumption is determined in accordance with load characteristics forming as a result of ore destruction in the mill. Mill drum speed is one of process variables due to which it is possible to control ore destruction mechanisms when choosing speed operation mode of adjustable electric mill drive. This study on increasing energy efficiency due to using mill electric drive is based on integrated modelling of process equipment – grinding process and electromechanic equipment – electric drive of grinding process. Evaluating load torque by means of its decomposition into a spectrum, mill condition is identified by changing signs of frequency components of torque spectrum; and when studying electromagnetic torque of electric drive, grinding process is monitored. Evaluation and selection of efficient operation mode of electric drive is based on the obtained spectrum of electromagnetic torque. Research results showed that with increasing mill drum speed – increasing impact energy, load torque values are comparable for the assigned simulation parameters. From the spectra obtained, it is possible to identify mill load condition – speed and fill level. This approach allows evaluating the impact of changes in process variables of grinding process on parameters of electromechanical system. Changing speed operation mode will increase grinding productivity by reducing the time of ore grinding and will not lead to growth of energy consumption. Integration of digital models of the technological process and automated electric drive system allows forming the basis for developing integrated methods of monitoring and evaluation of energy efficiency of the entire technological chain of ore beneficiation.

How to cite: Zhukovskiy Y.L., Korolev N.A., Malkova Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque // Journal of Mining Institute. 2022. Vol. 256 . p. 686-700. DOI: 10.31897/PMI.2022.91
Metallurgy and concentration
  • Date submitted
    2020-06-29
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

Transformation of grains of technological raw materials in the process of obtaining fine powders

Article preview

Crushing and grinding of materials are the most common processes of sample preparation for subsequent analysis and industrial application. Recently, grinding has become one of the most popular methods for producing nano-sized powders. This study investigates certain features of grain transformation in the process of grinding ores with finely dispersed valuable components in order to liberate them, as well as specifics of grinding metallurgical raw materials, metals and their mixtures for using them as initial components in metallurgical and other technological processes. We identified and examined structural and morphological changes of various powders after ultrafine grinding using the methods of scanning electron microscopy and X-ray microanalysis. It was proved that in order to take into account sample preparation artifacts during analytic studies of solid samples and development of technological processes, fine grinding of heterogeneous materials, especially if they contain metals, requires monitoring of the ground product by methods of scanning electron microscopy and X-ray microanalysis.

How to cite: Gembitskaya I.M., Gvozdetskaya M.V. Transformation of grains of technological raw materials in the process of obtaining fine powders // Journal of Mining Institute. 2021. Vol. 249 . p. 401-407. DOI: 10.31897/PMI.2021.3.9
Metallurgy and concentration
  • Date submitted
    2017-11-20
  • Date accepted
    2018-01-09
  • Date published
    2018-04-24

Sulfidization of silver-polymetallic ores of «Goltsovoe» deposit for decreasing loss of silver in mill tailings

Article preview

The results of laboratory studies of flotation concentration of silver-polymetallic ores of the Goltsovoe deposit at the Omsukchansk concentrator are presented. The results of sieve analysis of mill tailings of the experimental sample of MTP N 101 (N 7577-i) are described. They indicate that a large amount of silver (123 g/t) is lost in the size class – 0.040 mm (yield 50.25 %). According to the results of mineralogical analysis, it is established that the major losses of noble metal are associated with its fine impregnation in oxides, sulfides and silicate rocks. The main silver-bearing minerals are acanthite, polybasite and kustelite (class – 0.040 mm). Experimental studies were carried out in two stages. The purpose of the first stage is to determine the influence of grinding fineness in flotation feed (for a finished class content of 0.074 mm in the range of 60-95 %) for silver recovery at different amounts of butyl potassium xanthate (50, 150, 300 g/t). The purpose of the second stage is to evaluate the effectiveness of sulfidization at different consumption of sodium sulfide Na 2 S·9H 2 O (50, 150, 200, 450, 750 g/t – 1 % aqueous solution) under the conditions of the optimal reagent mode established in the first stage of the study. The results of experiments to determine the optimum grinding fineness and studies on the enrichment of silver-polymetallic ore with the use of sodium sulfide as a sulfidizer are presented. The efficiency of the sulfidization process is estimated. The following experimental dependencies of silver recovery are established: on the degree of grinding and consumption of butyl potassium xanthate; on variations of grinding fineness and the consumption of sodium sulphide (with a consumption of butyl xanthate 150 g/t); and on grinding fineness at optimum consumption of sodium sulfide 150 g/t and butyl potassium xanthate 300 g/t. A comparative evaluation of dependence of silver recovery index from the degree of grinding fineness before and after introduction of sodium sulphide (collecting agent consumption of 150 g/t) is given. T\

How to cite: Shumilova L.V., Kostikova O.S. Sulfidization of silver-polymetallic ores of «Goltsovoe» deposit for decreasing loss of silver in mill tailings // Journal of Mining Institute. 2018. Vol. 230 . p. 160-166. DOI: 10.25515/PMI.2018.2.160
Electromechanics and mechanical engineering
  • Date submitted
    2017-10-25
  • Date accepted
    2018-01-17
  • Date published
    2018-04-24

Innovative technology of large-size products manufacture

Article preview

Advantages and prospects for the use of mobile robotic machine-tools in the manufacture of large parts in the mining, cement and nuclear industries are considered, as well as the importance of using welded structures to reduce production costs. Schemes for finishing mechanical machining of welded large-sized parts such as bodies of revolution with the use of mobile robotic machine-tools equipped with a belt-grinding tool, an enlarged description of the technological process for manufacturing a large-sized shell of a welded structure are presented. The conclusion is made that it is necessary to take into consideration the use in the industry of frameless production technology, especially for the machining of large-sized parts, and the use of small mobile robotic machine-tools is a productive approach and has a prospective character. The technological approaches proposed in the article make it possible to remove the restriction on the overall size and mass of the parts being manufactured, which are proposed to be manufactured directly at the site of future operation. The effectiveness of this technology is confirmed both by theoretical research and by practical data of the authors. It was noted that the production by the domestic machine-tool industry of mobile universal and special robotic machine-tools will allow the country's engineering industry to be brought to a new, high-quality world level.

How to cite: Sanin S.N., Pelipenko N.A. Innovative technology of large-size products manufacture // Journal of Mining Institute. 2018. Vol. 230 . p. 185-189. DOI: 10.25515/PMI.2018.2.185