Submit an Article
Become a reviewer

Search articles for by keywords:
мерзлые и талые грунты

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-12-07
  • Date accepted
    2024-11-07
  • Date published
    2025-04-07

Determination of the tangential component of cutting resistance during frozen sedimentary rock cutting using blocked, deeply blocked and cell cutting methods

Article preview

Due to the insufficient accuracy of existing studies of frozen sedimentary rock cutting process for practical calculations, the article solves the problem of determining the tangential component cutting resistance for blocked, deep blocked and cell cutting, which are currently the most commonly used methods in earthmoving equipment. The cutting tool and rock mass force interaction is considered from the point of view of the emerging stresses, which act on the separated chip element. The analytical dependences for determining the tangential component of cutting resistance were obtained. The numerical explanation of the choice of cell cutting in relation to blocked and deeply blocked cutting is given. For all three methods of cutting, under equal geometrical parameters of the cutting tool and the physical and mechanical properties of the frozen rock, the numerical value of the tangential component of cutting resistance is obtained. The comparison of the cutting resistance estimated values has shown that cell cutting requires relatively less energy and is preferred during the process of frozen sedimentary rock excavation. During field and laboratory investigations with the use of a multi-purpose cutting stand, a sufficient convergence of the analytical statements with the physics of frozen sedimentary rock cutting process was established. The results of the research allow a more reasonable approach to the adjustment of existing methods for determining the required tractive force and power for the drive of an excavation machine, and, therefore, to the actual efficiency and profitability of work.

How to cite: Shemyakin S.A., Shishkin E.A. Determination of the tangential component of cutting resistance during frozen sedimentary rock cutting using blocked, deeply blocked and cell cutting methods // Journal of Mining Institute. 2025. p. EDN FRCVVZ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-04
  • Date accepted
    2023-09-20
  • Date published
    2023-10-27

Structure maintenance experience and the need to control the soils thermal regime in permafrost areas

Article preview

The risks of reducing the stability of buildings and structures are increasing in conditions of climate change and the active development of the territories under the influence of natural and anthropogenic factors. The main causes include: loss of the bearing capacity of frozen soils, various geocryological processes, errors at the stages of design, construction and operation of facilities. Main actual task when conducting research and industrial operations in the cryolithozone is monitoring and, if necessary, managing thermal processes in the permafrost layers interacting with facilities. In this article the obtained positive experience of various technologies applying at various stages of the life cycle of civil and industrial facilities was analyzed. It helps to eliminate or prevent the structure deformation or destruction under the influence of climate change. The methods of permafrost stabilization used in the oil and gas industry in process of industrial infrastructure development of the fields have been studied – freezing (cooling) of foundation soils during construction on heterogeneous foundations. The solution to the problems of minimizing accidents when locating production wells in the permafrost zone of the Yamal Peninsula is considered using the example of an oil and gas condensate field and restoring of the temperature regime of perennial unfrozen soils in areas of valve units of main gas pipelines. An assessment of methods used to maintain the industrial and residential infrastructure within the northern municipalities that ensure the functioning of the fuel and energy complex of the Russian Federation in the Arctic was made. The systems of thermal stabilization in the foundations of buildings and industrial facilities built and operated on permafrost soils allow to fully use the high strength and low deformability of frozen grounds. It ensures the state's long-term plans of the industrial development in the Arctic.

How to cite: Brushkov A.V., Alekseev A.G., Badina S.V., Drozdov D.S., Dubrovin V.A., Zhdaneev O.V., Zheleznyak M.N., Melnikov V.P., Okunev S.N., Osokin A.B., Ostarkov N.A., Sadurtinov M.R., Sergeev D.O., Fedorov R.Y., Frolov K.N. Structure maintenance experience and the need to control the soils thermal regime in permafrost areas // Journal of Mining Institute. 2023. Vol. 263 . p. 742-756. EDN IMQTQY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-27
  • Date accepted
    2023-06-20
  • Date published
    2023-12-25

Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif

Article preview

The specificity of the behavior of the soil massif near the tunnel under construction in difficult mining conditions is considered. It was revealed through the joint interpretation of the results of geophysical measurements in the tunnel and computer simulation. The results of field geophysical studies to identify areas of decompacted soil behind the lining in two existing tunnels during successive drilling of two new tunnels under them are described. A method to analyze the response of the lining to impact was used providing for the calculation of its energy. It has been established that the decompaction zones are mainly located in the lateral lower areas of the tunnel. To substantiate the mechanism of formation of cavities, computer simulations were carried out using the finite element method with the COMSOL Multiphysics software. The finite element model is built on the Drucker – Prager criterion in the variant of a two-dimensional problem statement. It is shown that at the initial position of two old tunnels, the areas of decompaction can develop mainly on the sides. The position of the zones changes significantly when excavating two new tunnels. Soil decompaction zones appear between the tunnels and there is a tendency for the areas to spread to the upper point of the tunnel. According to geophysical data time delays in the impact of new tunnels on the existing line are noted, as well as a decrease in the size of decompacted soil areas over time. There is a satisfactory agreement between the positions of the decompaction areas and voids obtained by the geophysical method and the results of numerical simulation.

How to cite: Nabatov V.V., Voznesenskii A.S. Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif // Journal of Mining Institute. 2023. Vol. 264 . p. 926-936. EDN JNNOAW
Mining
  • Date submitted
    2021-01-21
  • Date accepted
    2021-02-24
  • Date published
    2021-04-26

Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district)

Article preview

The underground space of the Kupol deposit is analyzed as a multicomponent system – rocks, underground water, microbiota, gases (including the mine atmosphere) and supporting structures – metal support and shotcrete (as an additional type of barring) and also stowing materials. The complex of host rocks is highly disintegrated due to active tectonic and volcanic activity in the Cretaceous period. The thickness of sub-permafrost reaches 250-300 m. In 2014, they were found to contain cryopegs with abnormal mineralization and pH, which led to the destruction of metal supports and the caving formation. The underground waters of the sub-permafrost aquifer are chemically chloride-sulfate sodium-calcium with a mineralization of 3-5 g/dm 3 . According to microbiological analysis, they contain anaerobic and aerobic forms of microorganisms, including micromycetes, bacteria and actinomycetes. The activity of microorganisms is accompanied by the generation of hydrogen sulfide and carbon dioxide. The main types of corrosion – chemical (sulfate and carbon dioxide), electrochemical and biocorrosion are considered. The most hazardous is the biocorrosion associated with the active functioning of the microbiota. Forecasting and systematization of mining and geological processes are carried out taking into account the presence of two zones in depth – sub-permafrost and below the bottom of the sub-permafrost, where mining operations are currently underdone. The importance of assessing the underground space as a multicomponent environment in predicting mining and geological processes is shown, which can serve as the basis for creating and developing specialized monitoring complex in difficult engineering and geological conditions of the deposit under consideration.

How to cite: Dashko R.E., Romanov I.S. Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district) // Journal of Mining Institute. 2021. Vol. 247 . p. 20-32. DOI: 10.31897/PMI.2021.1.3
Mining
  • Date submitted
    2019-03-17
  • Date accepted
    2019-05-13
  • Date published
    2019-08-23

Manifestations of Acoustic Emission in Frozen Soils with Simultaneous Influence of Variable Mechanical and Thermal Effects on Them

Article preview

The subject of the research is to establish the fundamental laws of acoustic emission in frozen soils, which allow to create ways to control (monitor) their stability under the influence of variable temperature fields and quasistatic mechanical stress from engineering objects located on these grounds for various purposes. The applied importance of such methods is to increase the speed and reduce the complexity of engineering geological surveys in the northern regions of Russia, carried out with the aim of predicting the loss of stability of the bases of buildings and structures to ensure their safe operation. The study was performed on the original instrumental complex. Its description and characteristics are given. With the use of this complex, thermoacoustic emission effects arising from the repeated alternation of freezing and thawing cycles of the soil during the development of its deformed state, starting from the normal compaction phase and up to the final stage of destruction (the bulging phase), have been studied. It is shown that on the basis of such informative parameters as thermally stimulated activity and duration of acoustic emission pulses, an indicator can be obtained that quantitatively characterizes the stages of the stress-strain state of soils. An experimental dependence of the field of values of this indicator as a function of the mechanical stress and the fractional composition of the test soil is given. The qualitative convergence of this dependence with the classical soil deformation diagram obtained by N.M.Hersevanov is shown, where the stages of compaction, loss of stability (shifts) and destruction are highlighted. Possible physical mechanisms and features of the formation of an acoustic emission response at each of these stages are considered and substantiated. It is noted that the approaches to receiving, processing and interpreting acoustic emission measurement information, which are grounded within the framework of the study, allow to control and monitoring of the carrying capacity and stress-strain state of soils directly in the field.

How to cite: Novikov E.A., Shkuratnik V.I., Zaytsev M.G. Manifestations of Acoustic Emission in Frozen Soils with Simultaneous Influence of Variable Mechanical and Thermal Effects on Them // Journal of Mining Institute. 2019. Vol. 238 . p. 383-391. DOI: 10.31897/PMI.2019.4.383
Mining
  • Date submitted
    2018-05-14
  • Date accepted
    2018-07-01
  • Date published
    2018-10-24

Method for forecast of surface deformation during excavation operations in restraint urban conditions using the slurry trench technique

Article preview

The article suggests the method for forecast of surface deformation during excavation operations in restraint urban conditions using the slurry trench technique based on FEM simulation. The results of numerical simulation of the construction of a semi-underground structure with slurry trench technique are given. The regularities of the change in the stress-strain state are determined depending on the trench parameters and the physical-mechanical properties of the soils. The work presents the troughs of surface subsidence during the construction of an excavation using the slurry trench technique, the diagrams of bending moments, transverse and longitudinal forces arising in the trench. Numerical experiments in Plaxis 2D and 3D were performed to estimate the discrepancy between modeling results in a plane and volumetric formulation of the problem.

How to cite: Demenkov P.A., Goldobina L.A., Trushko O.V. Method for forecast of surface deformation during excavation operations in restraint urban conditions using the slurry trench technique // Journal of Mining Institute. 2018. Vol. 233 . p. 480-486. DOI: 10.31897/PMI.2018.5.480
Mining
  • Date submitted
    2016-11-16
  • Date accepted
    2017-01-01
  • Date published
    2017-04-14

Complex use of heat-exchange tunnels

Article preview

The paper presents separate results of complex research (experimental and theoretical) on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

How to cite: Galkin A.F. Complex use of heat-exchange tunnels // Journal of Mining Institute. 2017. Vol. 224 . p. 209-214. DOI: 10.18454/PMI.2017.2.209
Mining
  • Date submitted
    2016-09-22
  • Date accepted
    2016-11-14
  • Date published
    2017-02-22

Technological problems and fundamental principles of methods of engineering-geocryological exploration during construction and exploitation of wells in permafrost rock mass

Article preview

The article describes peculiarities and complicating factors when constructing wells in cryolithic zones. It also presents fundamental principles of methods of pilot parametric drilling for complex exploration of engineering-geocryological conditions of multiple-well gas production platforms. The article describes peculiarities of geophysical examinations within the complex of parametric drilling for clarification and correlation of log sheet, and identifying non-commercial gas reservoirs and interpermafrost head oil-filed water horizons in permafrost rock mass. We defined main ecological issues of parametric drilling and presented potential environment pollutants from well drilling in cryolithic zones. It concludes a list of factors, which should be considered during gas well drilling in northern zones for meeting the «safety – sustainability – low waste» criteria.

How to cite: Cherkai Z.N., Gridina E.B. Technological problems and fundamental principles of methods of engineering-geocryological exploration during construction and exploitation of wells in permafrost rock mass // Journal of Mining Institute. 2017. Vol. 223 . p. 82-85. DOI: 10.18454/PMI.2017.1.82
Oil and gas
  • Date submitted
    2015-08-25
  • Date accepted
    2015-10-24
  • Date published
    2016-04-22

The modern technology of drilling and casing of well during the exploration of gas hydrates

Article preview

In the paper, the perspectives of exploration and completion of gas hydrate fields and the drilling problems in the gas hydrates of the northwest china are studied. It has been established, that the main reasons of complications in the Muli field are the secondary hydrate formation on the walls of the well and drilling assembly and ice formation inside the set cement during the well drilling and completion in permafrost. It has been shown, that in the areas with permafrost during the drilling of the layers containing gas hydrates, temperature and pressure changes can lead to the dissociation of hydrates. At the same time, pressure increase in the annular space due to the gas release, can lead to the secondary formation of gas hydrates, drill string stuck, ceasing of drilling fluid circulation, which is the reason of serious trouble in the wellbore. The results of the research on the development of drilling fluids compositions, which lower the drilling troubles of permafrost, are presented. Comparative experiments have been conducted to evaluate the effectiveness of thermodynamic and kinetic inhibitors, which prevent the repeated hydrate formation. It has been established, that the kinetic inhibitors have the clear advantage: they have good inhibiting effects even with low amounts of additives. In the laboratory conditions, the researches have been conducted to evaluate the phase equilibrium of gas hydrates during their reaction with the water solutions, containing kinetic inhibitor PVP. A thin clay drilling mud has been developed on the water base, providing the holding of the temperature in the level of –2 °С and its effectiveness for the gas hydrate fields in the PRC has been shown. Casing effectiveness of unstable rocks during the drilling in the conditions of negative temperatures inside the well largely depends on their physical-mechanical properties, composition and the technical indicators of cement materials. The authors suggest the composition of quick-setting cements based on aluminum binding materials. It has been established, that the analyzed compositions have the ability to considerably improve the results of cementing.

How to cite: Nikolaev N.I., Tyanle L. The modern technology of drilling and casing of well during the exploration of gas hydrates // Journal of Mining Institute. 2016. Vol. 218 . p. 206-214.
Geology
  • Date submitted
    2009-08-05
  • Date accepted
    2009-10-26
  • Date published
    2010-02-01

The influence of change in geotechnical engineering and geoenvironmental conditions during the process of building and operation of constructions of projected Alekseevsky cement factory on their stability (Mordovia Republic)

Article preview

The influence of change engineering-geological and geoenvironmental conditions on stability of cement factory are considered in this paper. Influence of additional humidifying, rise in temperature in the basis of constructions and activization of microbic activity is considered. The specificity of physicomechanical properties of silica rock and upper Jurassic clay is considered. Results of experimental researches of increase in microbic mass in soils at watering and heating are resulted. The estimation influences of temperature on deformation ability soils is given.

How to cite: Pankratova K.V. The influence of change in geotechnical engineering and geoenvironmental conditions during the process of building and operation of constructions of projected Alekseevsky cement factory on their stability (Mordovia Republic) // Journal of Mining Institute. 2010. Vol. 186 . p. 34-37.
Geology
  • Date submitted
    1954-08-08
  • Date accepted
    1954-10-23
  • Date published
    1956-01-17

О методике оценки состава и состояния искусственных грунтов для спортивного строительства

Article preview

В СССР построено и эксплуатируется большое число стадионов и спортивных площадок. Кроме того, ежегодно строятся сотни новых спор­тивных сооружений на заводах, в учебных заведениях, колхозах и совхозах. В процессе нового строительства, эксплуатации, текущего, профилак­тического и капитального ремонта стадионов и спортивных площадок возникает необходимость в объективной оценке состава и состояния ис­кусственных грунтов (специальных смесей). В настоящее время за основу оценки искусственных грунтов принят субъективный метод, достоверность которого не всегда правильна. До сих пор для оценки качества беговых дорожек, секторов легкой атлетики, теннисных и других спортивных площадок не принимается за основу их гранулометрический состав, физико-механические и водные свойства. Отсутствие объективных методов оценки объясняется неразработан­ностью технических требований, предъявляемых к искусственным грун­там. Так, например, в типовом проекте нормального спортивного ядра говорится: «... береговая дорожка должна быть упругой, эластичной, обладать постоянством объема, иметь ровную поверхность верхнего слоя и хорошую сопротивляемость атмосферным (дождь, снег, лед, ветер) и механическим воздействиям...». Эти требования ни в коей мере не могут быть названы техническими и не дают возможности объективно оцени­вать состав и состояние специальных смесей.

How to cite: Unknown // Journal of Mining Institute. 1956. Vol. 32 № 2. p. 158.