-
Date submitted2022-09-26
-
Date accepted2023-09-20
-
Date published2024-04-25
Technology of absorption elimination with cross-linking plugging material based on cement and cross-linked polymer
The peculiarity of the geological structure of carbonate reservoirs is their complex permeability and porosity characteristics, reflecting the simultaneous presence of cavities variety (fractures, caverns, pores). Loss of circulation during penetration of fractured rock intervals significantly increases well construction time due to lack of efficient plugging isolation compositions. The main disadvantages of traditional compositions are high sensitivity to dilution in the process of their injection into the absorption zone, as well as insufficient structural strength to prevent the isolation composition from spreading during the induction period. For efficient isolation of catastrophic absorption zones in conditions of high opening of absorption channels a new cross-linking plugging isolation composition has been developed, which allows to exclude disadvantages of traditional isolation compositions. Application of the composition will allow to reduce the injection volume of the isolation composition and the time of isolation works due to its resistance to dilution and movement of formation water in the absorption interval.
-
Date submitted2022-10-31
-
Date accepted2023-03-02
-
Date published2023-12-25
Lightweight ash-based concrete production as a promising way of technogenic product utilization (on the example of sewage treatment waste)
- Authors:
- Tatyana E. Litvinova
- Denis V. Suchkov
The study is devoted to the development of a method for the technogenic raw materials utilization. Special attention is paid to the prospect of involving products based on them in the production of new building materials. The results of Russian and foreign studies on the reuse of wastes, such as phosphogypsum, metallurgical slag, waste from municipal and industrial wastewater treatment, etc., in the building materials industry are considered. It has been established that the use of incinerated sewage sludge ash in construction is a promising direction in terms of environmental and economic efficiency. The research confirmed the compliance of the lightweight ash-based concrete components to the regulatory documentation requirements for a number of indicators. As a result of the research, the composition of the raw mixture for the lightweight concrete production with incinerated sewage sludge ash as a replacement for a part of the cement has been developed. In terms of parameters, the developed concrete corresponds to standard lightweight concrete, marked in accordance with the regulatory documents of the Russian Federation as D1300 (density not less than 1.3 g/cm3), Btb2 (flexural strength not less than 2 MPa), M200/B15 (compressive strength not less than 15 MPa). Lightweight ash-based concrete is suitable for use in construction, repair of roads and improvement of urban areas.
-
Date submitted2022-06-17
-
Date accepted2022-10-18
-
Date published2022-11-03
Scientific experimental bases for dry beneficiation of mineral ores
The article presents the results of research on the development of processes and equipment for ore preparation and pneumatic dry beneficiation of mineral ores. The methods of crushing and grinding before enrichment of minerals have been considered, dry enrichment of geomaterials is investigated. Highly efficient prototypes of beneficiation equipment are developed and tested: crushers of multiple dynamic impact RD-MDV-900, DKD-300, centrifugal grinders CMVU-800 and VCI-12, pneumatic separator POS-2000. Fundamental designs are created, and a number of new ore preparation and pneumatic beneficiation instruments are being designed. The efficiency of approbation of an autonomous dry beneficiation complex with new safe environmental standards for the processing of gold-bearing ores, which makes it possible to fully release and extract free gold with a particle size from 10,000 to 100 µm, is shown. The introduction of the dry beneficiation method is very promising for the mining industry. It will allow to reduce capital costs for the construction of stationary beneficiation plants, completely or partially withdraw from the use of process water, the construction of a water supply system, a traditional tailing dam, etc.
-
Date submitted2021-03-31
-
Date accepted2021-09-29
-
Date published2021-10-21
Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials
- Authors:
- Boris Yu. Zuev
The research purpose is to develop a methodology that increases the reliability of reproduction and research on models made of equivalent materials of complex nonlinear processes of deformation and destruction of structured rock masses under the influence of underground mining operations to provide a more accurate prediction of the occurrence of dangerous phenomena and assessment of their consequences. New approaches to similarity criterion based on the fundamental laws of thermodynamics; new types of equivalent materials that meet these criteria; systems for the formation of various initial and boundary conditions regulated by specially developed computer programs; new technical means for more reliable determination of stresses in models; new methods for solving inverse geomechanical problems in the absence of the necessary initial field data have been developed. Using the developed methodology, a number of complex nonlinear problems have been solved related to estimates of the oscillatory nature of changes in the bearing pressure during dynamic roof collapse processes; ranges of changes in the frequency of processes during deformation and destruction of rock mass elements, ranges of changes in their accelerations; parameters of shifts with a violation of the continuity of the rock mass under the influence of mining: secant cracks, delaminations, gaping voids, accounting for which is necessary to assess the danger of the formation of continuous water supply canals in the water-protection layer.
-
Date submitted2020-06-09
-
Date accepted2020-11-02
-
Date published2020-11-24
Method of drilling process control and experimental studies of resistance forces during bits drilling with PDC cutters
A rational, theoretically proved and empirically verified control system is a condition for optimal management of the drilling process in compliance with the criteria for minimizing the cost of time and material resources. A new generation of rock-cutting tools using PDC cutters (polycrystalline diamante cutters), which are extremely ef fective when drilling wells for various purposes in medium-hard rocks, dictates the need to develop methods and criteria for optimal control of the drilling process using this tool. The paper presents an analysis of the force interaction between rock-cutting elements, face rock, and drilling mud sa turated with slam, highlights the influencing factors and provides dependencies for determining the parameters of rock failure. Empirical verification of the theoretical propositions was carried out based on the data analysis from experimental bit drilling of marble with PDC cutters with a diameter of 76.2 mm, processed using the method of full factor experiment to obtain mathematical models of factors and their graphical interpretation. The method of controlling the drilling process based on the optimal ratio of the tool rotation frequency, axial weight and deepening per one turnover is considered, which allows determining the rock failure mode at the well bottom by indirect signs and choose the optimal values of the drilling mode parameters that correspond to the most optimal conditions in terms of achieving the maximum mechanical drilling speed in conjunction with the rational mode of rock-cutting tool operation. A scheme is presented that contains possible variants of the bit run mode and ways to recognize them by the ratio of the deepening per turnover and the rotation frequency of the rock-cutting tool.
-
Date submitted2019-04-04
-
Date accepted2019-08-04
-
Date published2020-04-24
Chemical heterogeneity as a factor of improving the strength of steels manufactured by selective laser melting technology
The aim of this paper was to establish the causes of the heterogeneity of the chemical composition of the metal obtained by the LC technology. The powdered raw material was made from a monolithic alloy, which was fused by the SLM, the initial raw material was a laboratory melting metal of a low-carbon chromium-manganese-nickel composition based on iron. To determine the distribution pattern of alloying chemical elements in the resulting powder, electron-microscopic images of thin sections were combined with X-ray analysis data on the cross-sections of the powder particles. As a result, it was found that transition (Mn, Ni) and heavy (Mo) metals are uniformly distributed over the powder particle cross-sections, and the mass fraction of silicon (Si) is uneven: in the center of the particles, it is several times larger in some cases. The revealed feature in the distribution of silicon is supposedly due to the formation of various forms of SiO 4 upon the cooling of the formed particles. The internal structure of the manufactured powder is represented by the martensitic structure of stack morphology. After laser fusion, etched thin sections revealed traces of segregation heterogeneity in the form of a grid with cells of ~ 200 μm.
-
Date submitted2019-06-28
-
Date accepted2019-09-03
-
Date published2019-12-24
Development of a drilling process control technique based on a comprehensive analysis of the criteria
- Authors:
- V. V. Neskoromnykh
- M. S. Popova
Compliance with drilling operations requirements is achieved by introducing advanced approaches to the management of the drilling process. Main requirement is to reduce the time and material costs for construction of the well. Increase in drilling speed is provided by rational selection of rock cutting tools and modes of its use. Development of a new generation of rock cutting tools is a complex process and requires systematic, integrated approach. In order for high costs of developing and manufacturing the tool to pay off without significantly increasing the cost of drilling, considerable attention should be paid to scientifically justified methods for its running. At well drilling using bottomhole telemetry systems with full computer support for the drilling process, there is a reasonable possibility of using a control technique based on objective results of the drilling process coming directly from the bottomhole of the well in real time. Use of a full factorial experiment is justified for processing data that affect drilling performance. Aim of the research is to develop a drilling process management technique based on a comprehensive analysis of criteria online. Objects of research: rock destruction mechanism during drilling; parameters affecting the process of well drilling; optimization of well drilling processes. The research used the following: experimental drilling with a diamond tool at the bench, method of a full factorial experiment, analytical studies. Article highlights the factors affecting the performance of a diamond rock cutting tool in the process of drilling a well, notes main criteria affecting the efficiency of the drilling process. It also describes mechanism of volumetric destruction, defines the conditions for the destruction of rock at various drilling modes and the dependence of the change in deepening per round on the parameters of the drilling modes. Technique of controlling the parameters of the drilling mode is considered, which allows determining indirectly the mode of rock destruction at the bottomhole of the well and choosing optimal values of the parameters for the drilling mode that correspond to the most favorable conditions.
-
Date submitted2019-01-23
-
Date accepted2019-03-17
-
Date published2019-06-25
Development of the composition of the process fluid to eliminate bit seizure
- Authors:
- E. A. Rogov
During well construction, one of the most complicated types of accidents is the bit seizure as a result of which oil and gas companies incur significant losses due to the abandonment of a portion of the drill string in the well, cutting of an additional wellbore, and sometimes loss of the well. In the case of the elimination of seizure due to packing a positive result can be achieved by pumping portions of the process fluid into the seizure area. Destruction of the packer during the physicochemical effect of the process fluid, in general, allows for complete or partial softening of the packer, changing the pressure in the seizure area and significantly reducing the force required to release the stuck tool. The article presents the results of laboratory studies on the effect of various compositions of process fluids on the packer to eliminate the bit seizure. The effectiveness of the packer destruction was estimated by reducing the tangential stresses after the physicochemical effect of various compositions of process fluids for the same period. A 10% aqueous solution of hydroxyethylidene diphosphonic acid with an addition of 0.5% surfactant alpha olefin sodium sulfonate is recommended as a process fluid to eliminate packer seizures.
-
Date submitted2018-10-28
-
Date accepted2018-12-30
-
Date published2019-04-23
Development and research of formation technologies on specialized presses with subsequent sintering of high-density details from iron-based powders
- Authors:
- A. M. Dmitriev
- N. V. Korobov
- A. Zh. Badalyan
Creating shifts of the lyaers in a deforming workpieces improves the quality of the product produced by pressure treatment. qual-channel angular pressing and precipitations of a cylindrical billet with a rotating turnaround were developed by specialists earlier and became basic for scientists engaged in nanotechnology. One of the most modern schemes for creating nanostructures by processing on presses is the «Cyclic Extrusion Compression» scheme (in Russia – «Hourglass»), which has significant drawbacks. To date, research on the creation of layer shifts in compacted metal powders is substantially less than in compaction of compact blanks. The article developed compaction schemes for presses of blanks from iron-based powders that have a certain analogy with the «Hourglass», while lacking the disadvantages inherent in the named scheme and implemented on the created samples of specialized hydraulic presses. The results of the studies of density, strength and microhardness before sintering the samples molded from a number of domestic and imported powders on iron base, including those doped with carbon and other alloying components, are described. It has been established that with the use of the formation schemes for powders providing large shifts between particles, the density of the preforms increases on average by 10-12 %. With an average stress (16.32 MPa) of the transverse section of the molded specimen prior to its sintering, molding with shifts between particles increases this stress by 78 %. The strength after sintering of samples made using the compaction schemes developed by the authors of the article increases approximately by 2 times. Magnetic pulse treatment (MPT) of a molded sample prior to its sintering increases its resistance to shearing before sintering, regardless of the molding pattern. When MPT of both the powder and the molded sample is executed, the most uniform distribution of microhardness in the sample is achieved, and after subsequent sintering, the most uniform distribution of the mechanical characteristics of the product. The results of all studies are described by regression equations.
-
Date submitted2018-05-06
-
Date accepted2018-07-17
-
Date published2018-10-24
Obtaining intermetallic compounds in Al–Ti–Zn system
- Authors:
- V. V. Kaminskii
- S. Y. Petrovich
- V. A. Lipin
Binary intermetallic compounds – titanium aluminides (TiAl, Ti 3 Al) – when added to the alloys, significantly increase their strength and special properties. The most promising direction to produce intermetallic compounds are mechanochemical technologies, including mechanical alloy building. Mechanical alloying makes it possible to introduce much smaller particles into the metal matrix than can be achieved using standard powder metallurgy technologies. In addition to mechanical synthesis, aluminum-based intermetallic compounds were produced by self-propagating high-temperature synthesis (SHS) of solid chemical compounds. The synthesis was carried out according to a multistage scheme: preparation of titanium and aluminum powder, mixing; synthesis of the Al 3 Ti intermetallic compound by the SHS method in vacuum followed by mechanical activation of stoichiometric charges. The aim of the research was to study the dynamics of the development of nanodispersed phases in the process of synthesis during mechanical alloying. The power absorbed by the unit mass of the material for different processing times of the charge was calculated. When the level of the specific power (dose) of mechanical treatment was 3.5 kJ/g, the maximum content of intermetallic compound in the resulting material was achieved. Based on calculations and the data obtained during X-ray phase analysis, the dependence of the change in the content of ternary intermetallic compounds in the final product on the absorbed power was determined. As a result of the studies using raster electron microscopy and X-ray analysis, it was found that mechanical alloying of nanostructured intermetallic compounds Ti 4 ZnAl 11 and Ti 25 Zn 9 Al 66 with the size of nanodisperse phases less than 12 nm in the Al–Ti–Zn system, the weight ratio of proportion of the latter reaches 74 %.
-
Date submitted2018-01-14
-
Date accepted2018-03-08
-
Date published2018-06-22
Development of research of low-dimension metal-containing systems from P.P. Weymarn to our days
- Authors:
- I. V. Pleskunov
- A. G. Syrkov
The article analyzes main laws discovered by P.P.Weymarn (1879-1935) during his work at the Saint-Petersburg Mining University, they are connected with obtaining metal-containing disperse substances with nanometer particle size. It enlists priority papers in this field (1906-1915) and describes peculiarities of P.P.Weymarn scientific school which has several connections to modern research being conducted at the Saint-Petersburg Mining University in the field of «nanotechnology» as well as by foreign scientists. The paper reveals continuity in the field of several objects (disperse metals) and the methodology of studying the properties and stoichiometry of substances depending on dispersity. It provides information on achievements in synthesis of surface nanostructured metals and low-dimension forms of substances in various porous matrixes. Among the studies of the XXI century developing Weymarn’s ideas there can be noted solid-state hydride synthesis of metals, layering of different-sized molecules of ammonium compounds on metals (Al, Cu, Ni, Fe), as well as synthesis of metal nanostructures (Ag, Cu, Bi) using porous glass as a particle size stabilizing matrix. In the latter case, the dispersity of the metal increases while its melting point decreases.
-
Date submitted2016-09-06
-
Date accepted2016-11-15
-
Date published2017-02-22
Modelling of fiberglass pipe destruction process
The article deals with important current issue of oil and gas industry of using tubes made of high-strength composite corrosion resistant materials. In order to improve operational safety of industrial pipes it is feasible to use composite fiberglass tubes. More than half of the accidents at oil and gas sites happen at oil gathering systems due to high corrosiveness of pumped fluid. To reduce number of accidents and improve environmental protection we need to solve the issue of industrial pipes durability. This problem could be solved by using composite materials from fiberglass, which have required physical and mechanical properties for oil pipes. The durability and strength can be monitored by a fiberglass winding method, number of layers in composite material and high corrosion-resistance properties of fiberglass. Usage of high-strength composite materials in oil production is economically feasible; fiberglass pipes production is cheaper than steel pipes. Fiberglass has small volume weight, which simplifies pipe transportation and installation. In order to identify the efficiency of using high-strength composite materials at oil production sites we conducted a research of their physical-mechanical properties and modelled fiber pipe destruction process.
-
Date submitted2014-12-11
-
Date accepted2015-02-11
-
Date published2015-12-25
Influence of the type of hardening treatment on wear-resistant materials of mining equipment
- Authors:
- V. I. Bolobov
- S. A. Chupin
For example, steel 110G13L as the material of teeth of excavator buckets, shows that the work hardening (hardening) is an effective means to increase (up to 10 times) the wear resistance of components in contact with abrasive media, such as marble, yielding the steel in a state of hard-ening of hardness. In the case of wear on the rocks (granite, gabbro) with a hardness greater than the hardness of steel, the effect of hardening has almost no effect. It was found that high-temperature thermomechanical treatment of steel 35HGSA as the material of holders of rotary cut-ters (strain at 900 С, water quenching, tempering at 230 С) leads to a substantial increase of its hardness (23 %) and durability (38 %) compared to typical heat treatment used in the manufacture of cutting tools at the factory.
-
Date submitted2014-12-25
-
Date accepted2015-02-07
-
Date published2015-12-25
Nondestructive control of elasticity modulus anisotropy of composite materials in the products
- Authors:
- A. I. Potapov
The technique of nondestructive control of anisotropy of composite materials in a product us-ing a pulse ultrasonic method is considered in the article. Calculated dependence to determine the degree of filler orientation in a polymeric composite material with varying filler laying is shown. The following filler laying is considered: chaotic, longitudinally cross, unidirectional. In addition, experimental results of anisotropy control of the elastic modulus in glass-reinforced plastics with different degrees of anisotropy using the pulsed ultrasonic method are given in the article.
-
Date submitted2013-07-29
-
Date accepted2013-09-24
-
Date published2014-03-17
Physical modeling of interchamber pillars fixity in Gubkin mine
Procedure of Korobkovsky iron-ore deposit new levels mining with the usage of physical modeling has been determined. Evaluation of interchamber pillars fixity in Gubkin mine and soil surface deformation in the process of lift mining and fractional interchamber pillars robbing on three levels has been carried out. After conducting geomechanical research the decision of foremost development and mining of bottom level reserve between –125 m / –250 m has been made.
-
Date submitted2010-07-27
-
Date accepted2010-09-09
-
Date published2011-03-21
Utilization of enrichment waste of diamondiferous rock accounting peculiarities of M.V.Lomonosov deposit
- Authors:
- A. Yu. Oblitsov
In given article the questions of enrichment waste utilization of M.V.Lomonosov diamond deposit are considered taking in account some important peculiarities of this deposit and prospective of obtaining building materials on basis of enrichment waste products is stated.
-
Date submitted2009-07-25
-
Date accepted2009-09-09
-
Date published2010-04-22
The use of data on stress-strain state of rock mass in solutions of mining-and-technical tasks on the example of the Tishin ore mine
The Permion State Technical University and ASE «VNIItsvetmet» have carried out in situ measurements of stress-strain state at the Tishinsky lead-zinc ore deposit. Measurements and interpretation of deformations and stresses caused by excavation were used. Complex of researches made it possible to solve some important problems for safeguarding effective and secure ore production ore on deep level.
-
Date submitted2009-07-06
-
Date accepted2009-09-24
-
Date published2010-04-22
Investigation of geomechanical processes in underground mining of mineral resources at the automated test bench for physical modeling
- Authors:
- B. Yu. Zuev
The paper presents the particular results of development of the method for modeling on equivalent materials in the recent years, concerning the evolution of the primary technical base of the laboratory – test benches, which allowed to supplement substantially the potentialities of physical modeling for its complex application jointly with the full-scale and mathematical methods in solving a number of actual tasks in mining geomechanics.