Submit an Article
Become a reviewer
Vol 223
Pages:
93
Download volume:
RUS ENG

Modelling of fiberglass pipe destruction process

Authors:
A. K. Nikolaev1
Al'fredo Lazaro Koeio Velaskes2
About authors
  • 1 — Saint-Petersburg Mining University
  • 2 — Mining Metallurgical Institute
Date submitted:
2016-09-06
Date accepted:
2016-11-15
Date published:
2017-02-26

Abstract

The article deals with important current issue of oil and gas industry of using tubes made of high-strength composite corrosion resistant materials. In order to improve operational safety of industrial pipes it is feasible to use composite fiberglass tubes. More than half of the accidents at oil and gas sites happen at oil gathering systems due to high corrosiveness of pumped fluid. To reduce number of accidents and improve environmental protection we need to solve the issue of industrial pipes durability. This problem could be solved by using composite materials from fiberglass, which have required physical and mechanical properties for oil pipes. The durability and strength can be monitored by a fiberglass winding method, number of layers in composite material and high corrosion-resistance properties of fiberglass. Usage of high-strength composite materials in oil production is economically feasible; fiberglass pipes production is cheaper than steel pipes. Fiberglass has small volume weight, which simplifies pipe transportation and installation. In order to identify the efficiency of using high-strength composite materials at oil production sites we conducted a research of their physical-mechanical properties and modelled fiber pipe destruction process.

10.18454/pmi.2017.1.93
Go to volume 223

References

  1. Бобылев Л.М. Труба или решето? // Нефть России. 2000. № 1. С. 64-68.
  2. Варфоломеева Л. Информационные технологии на службе нефтегазовой отрасли России // Нефть России. 2004. № 9. С. 24-25.
  3. Зайцев К.И. Пластмассовые трубы – перспектива замены стальных труб на нефтепромыслах // Строительство трубопроводов. 1996. № 4-5. С. 7-11.
  4. Карнаухов М.Л. Справочник мастера по подготовке газа / М.Л.Карнаухов, В.ВА.Кобычев. М.: Инфра Инженерия, 2009. С. 256.
  5. Касьяненко В. Биологический фактор коррозии // Нефть Газ Промышленность. 2004. № 6 (11). С. 18-20.
  6. Ягубов Э.З. Композиционно-волокнистые трубы в нефтегазовом комплексе / Э.З.Ягубов, И.Ю.Быков. М: Центр ЛитНефтеГаз, 2008. С. 271.
  7. Abdul Majid M.S. Effect of Angeles in biaxial ultimate elastic wall stress (UEWS) / M.S.Abdul Majid, M.Afendi, R.Daud, M.Hekman // 2nd International Conference on Sustainable Materials, 2013. P. 424-428.
  8. Agarwal B.D. Analysis and Performance of Fiber Composites / B.D.Agarwal, L.J.Broutman // John Wiley & Sons, Inc., 1990.
  9. Frost S.R. Glass fibre-reinforced epoxy matrix filament wound pipes for use in the oil industry / S.R.Frost, A.Cervenka // Composites Manufacturing. 1994. № 5(2). P. 73-81.
  10. Hashin Z. A Fatigue Failure Criterion for Fiber Reinforced Materials / Z.Hashin, A.Rotem // Journal of Composite Materials. 1973. № 7(4). P. 448-464.
  11. Jones M.L.C. Microscopy of failure mechanisms in filament wound pipes / M.L.C.Jones, D.Hull // Materials Science. 1979. № 14. P. 165-174.

Similar articles

Plume tectonics – myth or reality?
2017 Yu. I. Daragan-Sushchov
Development of energy-saving technologies providing comfortable microclimate conditions for mining
2017 B. P. Kazakov, L. Yu. Levin, A. V. Shalimov, A. V. Zaitsev
Mathematical models of gas-dynamic and thermophysical processes in underground coal mining at different stages of mine development
2017 M. V. Gryazev, N. M. Kachurin, S. A. Vorobev
Development of methods of analytical geometry of a sphere for solving geodesy and navigation tasks
2017 G. I. Khudyakov
Technological problems and fundamental principles of methods of engineering-geocryological exploration during construction and exploitation of wells in permafrost rock mass
2017 Z. N. Cherkai, E. B. Gridina
Formation and development of theoretical principles for mineral resources logistics
2017 B. K. Plotkin, M. M. Khaikin