Submit an Article
Become a reviewer
Vol 223
Pages:
44
Download volume:

Open-pit mining of lignin waste storage

Authors:
A. V. Mikhailov
About authors
  • Saint-Petersburg Mining University
Date submitted:
2016-09-15
Date accepted:
2016-11-07
Date published:
2017-02-26

Abstract

The purpose of this paper is to develop performance criteria for fleet selection in surface mining of lignin as a raw material for factory-made fuel. The East Siberian Biotechnical Plant (ESBP) proposes to close the Lignin Waste Storage (LWS) at Tulun, Irkutsk Region of Russia. The LWS is a 9.6 ha facility used for the long-term storage of hydrolysis lignin and some fly ash. The project provided whole-year open-pit mining of lignin storage with one mining ledge within 3 years. Productivity – 1500 t/day or 447 000 t/year. Excavated lignin will be stockpile on the Pellet Plant territory for later processing. Part of this closure effort would involve constructing an artificial reservoir on the place of LWS. The objectives of this project were as follows: determine equipment needs and develop optimal procedures for the lignin excavation and transportation. Lignin moving may include site preparation, excavation, transportation and road surfacing. Lignin excavation is conduct by using techniques similar to those used for open-pit mining of peat. For this project, the excavator is the most important piece of equipment required for lignin removal and handling. The mining process consist of excavating the lignin (using Kraneks ЕК-270LC) and hauling it to pellet plant via six off-road tractors&semitrailers (John Deere 7730& ISON-8520).

10.18454/pmi.2017.1.44
Go to volume 223

References

  1. Телего А.В. Обоснование проходимости транспортно-тракторного агрегата при разработке органогенного сырья / А.В.Телего, А.В.Михайлов, А.В.Большунов // Записки Горного института. 2014. Т. 209. С. 87-90.
  2. Aghajani A. Application of AHP-TOPSIS method for loading-haulage equipment selection in open pit mines / A.Aghajani, M.Osanloo // XXVII International Mining Convention. Mexico, 2007.
  3. Burger J.A. Impact of tracked and rubber-tired tractors on a forest soil / J.A.Burger, J.V.Perumpral, R.E.Kreh, J.L.Torbert, S.Minaei // Trans ASAE. 1985. № 28. P. 369-373.
  4. Hatchell G.E. Soil disturbances in logging: Effects on soil characteristics and growth of loblolly pine in the Atlantic Coastal Plain // G.E.Hatchell, C.W.Ralston, R.R.Foil // J. For. 1970. № 68. P. 772-775.
  5. Lindberg J.J. Specialty polymers from lignin / J.J.Lindberg, T.A.Kuusela, K.Levon // Lignin: Properties and Materials. ACS Symposium Series. № 397. Washington, D.C.: American Chemical Society, 1989. P. 190-204.
  6. Lora J.H. Recent industrial applications of lignin: A sustainable alternative to non-renewable materials / J.H.Lora, W.G.Glasser // Journal of Polymers and the Environment. 2002. № 10(1-2). P. 39-48.
  7. Mikhailov A. Peat surface mining methods and equipment selection // Mine Planning and Equipment Selection: Proceedings of the 22nd MPES Conference. Dresden, Germany, 14th-19th October 2013. 2014. XXVII. Vol. 2. P. 1243-1249.
  8. Mining waste treatment technology selection. Excavation and Disposal of Solid Mining Waste. URL: http://www.itrcweb.org/miningwaste-guidance/to_excavation.htm. (Date of access 21.05.2015).
  9. Morton A. Barlaz. Carbon sequestration in landfills: Documentation from field samples / North Carolina State University, 2014. URL:http://erefdn.org/index.php/grants/fundedresearchinfo/carbon_sequestration_in_landfills_documentation_from_field_samples. (Date of access 21.02.2015).
  10. Porsinsky T. Wheel numeric as parameter for assessing environmental acceptability of vehicles for timber extraction / T.Porsinsky, D.Horvat // Mova mehanizacija sumarstva. 2005. № 26. P. 25-38.
  11. Porsinsky T. Comparison of two approaches to soil strength classifications / T.Porsinsky, M.Sraka, I.Stankic // Croatian Journal of Forest Engineering. 2006. № 27(1). P. 17-26.
  12. Review of factors affecting disturbance, compaction and trafficability of soils with particular reference to timber harvesting in the forests of south-west Western Australia: Consultants report to Department of Conservation and Land Management, Western Australia // M.A.Rab, F.J.Bradshaw, R.G.Campbell, S.Murphy. Sustainable Forest Management Series. SFM technical report. 2005. N 2. 146 p.
  13. Saarilahti M. Soil interaction model. Project deliverable D2 (Work package N 1) of the Development of a Protocol for Ecoefficient Wood Harvesting on Sensitive Sites (ECOWOOD). EU 5th Framework Project (Quality of Life and Management of Living Resources), 2002. P. 1-87.
  14. Saarilahti M. Dynamic terrain classification: modelling of the seasonal variation of the trafficability on forest sites. Soil interaction model. Appendix report. 2002. № 1. P. 1-22.
  15. Shoop S.A. Terrain characterization for trafficability. US Army Corps of Engineers – Cold Regions Research & Engineering Laboratory. CRREL report. 1993. № 93-6. P. 1-30.

Similar articles

Research on technical and technological parameters of inclined drilling
2017 M. V. Dvoinikov
Modelling of fiberglass pipe destruction process
2017 A. K. Nikolaev, Al'fredo Lazaro Koeio Velaskes
Combined 2D inversion of electrotomographic and audio-magnetotellurgic sounding data to solve mining problems
2017 V. A. Kulikov, A. E. Kaminskii, A. G. Yakovlev
Gas-dynamic processes affecting coal mine radon hazard
2017 V. I. Efimov, A. B. Zhabin, G. V. Stas
Plume tectonics – myth or reality?
2017 Yu. I. Daragan-Sushchov
Mathematical models of gas-dynamic and thermophysical processes in underground coal mining at different stages of mine development
2017 M. V. Gryazev, N. M. Kachurin, S. A. Vorobev