Submit an Article
Become a reviewer

Search articles for by keywords:
гидравлический экскаватор

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-17
  • Date accepted
    2025-01-28
  • Date published
    2025-04-25

Determination of impact hazard potential of rocks in the Norilsk Industrial Region

Article preview

The deeper the mineral deposits developments are, the worse the mining and geological conditions become. Significant growth of stress level in the rock mass contributes to possible manifestation of rock pressure in dynamic form. The resulting task of assessment of rock impact hazard is closely related to the task of obtaining more accurate results of compression tests of samples in rigid or servohydraulic test presses using graphs of their full deformation. This approach requires special expensive equipment, considerable time resources, and sufficient core material. Therefore, it is important to have an approach that allows to assess the propensity of rocks to brittle fracture with research methods simple enough not to result in the loss of quality and reliability of the obtained results. This paper presents the results of laboratory tests of rocks from the Norilsk Industrial Region to determine their tensile and compressive strengths. Test methods involved both domestic and foreign standards for determining the value of the brittleness coefficient. The impact hazard potential of rocks was determined using the Kaiser criterion. It is found that the tested lithological types (rich sulfide ores, hornblende, disseminated ores, and gabbro-dolerite rocks), with the exception of anhydrite, have a low impact hazard potential.

How to cite: Gospodarikov A.P., Zatsepin M.A., Kirkin A.P. Determination of impact hazard potential of rocks in the Norilsk Industrial Region // Journal of Mining Institute. 2025. Vol. 272 . p. 83-90. EDN UOHOQP
Energy industry
  • Date submitted
    2023-03-16
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator

Article preview

In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.

How to cite: Rakhutin M.G., Giang K.Q., Krivenko A.E., Tran V.H. Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator // Journal of Mining Institute. 2023. Vol. 261 . p. 374-383. EDN OKWKUF
Energy industry
  • Date submitted
    2023-03-16
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Energy efficiency of the linear rack drive for sucker rod pumping units

Article preview

At present, in order to increase oil production and reduce economic costs in the development of marginal fields, the development of a cluster method using compact mobile drives of sucker rod pumping units (SRPU) is relevant. The aim of the work is to analyze the ways to improve the energy efficiency of the SRPU by reducing the loss of mechanical and electrical energy, to select the most energy-efficient compact drive for the development of marginal fields in the cluster method, to carry out the kinematic and strength calculations of the drive of the selected size, to develop an adaptive control system for a group of drives in the cluster development of drillings. According to the results of the performed calculations, the linear rack-and-gear drive has the highest efficiency of the drive mechanism. The kinematic and strength calculations of a linear rack-and-gear drive with a stroke length of 1120 mm and a load of up to 8 tons are presented. It was shown that the usage of a direct torque control system and a kinetic energy storage system for the SRPU drive elements and a rod string is an effective means of reducing energy costs in oil production from marginal fields. The use of the developed system for storing and redistributing the potential energy of the rods between the SRPUs that lift oil made it possible to eliminate fluctuations in the power consumption, reduce the power peak value by three times, the peak value of the current consumed from the electric network by two times, and reduce losses in the input converter and cables by three times.

How to cite: Ganzulenko O.Y., Petkova A.P. Energy efficiency of the linear rack drive for sucker rod pumping units // Journal of Mining Institute. 2023. Vol. 261 . p. 325-338. EDN HIGAOE
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-05-13
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing

Article preview

Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.

How to cite: Filippov Е.V., Zakharov L.A., Martyushev D.A., Ponomareva I.N. Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing // Journal of Mining Institute. 2022. Vol. 258 . p. 924-932. DOI: 10.31897/PMI.2022.103
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-15
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter

Article preview

During the seasonal work of the 64th Russian Antarctic Expedition in 2018-2019 at the “Vostok” drilling facility named after B.B.Kudryashov (“Vostok” station, Antarctic) specialists of Saint Petersburg Mining University conducted experimental investigations on the process of drilling by melting with simultaneous expansion of wells in the ice mass. A test bench and a full-scale model of a thermohydraulic reamer-drilling tool were developed, manufactured and tested for the research. The first bench tests of the full-scale model proved its efficiency and suitability for experimental drilling with simultaneous expansion of wells in ice mass; its operational capabilities were determined and the drawbacks that will be taken into account in future were found out. The article substantiates the choice of constructive elements for thermohydraulic reamer-drilling tool. It is determined that the technology of full diameter drilling with simultaneous expansion of the well in ice mass can be implemented by combining contact drilling by melting and convective expansion with creation of forced near-bottomhole annular circulation of the heated heat carrier. Dependencies of expansion rate on main technological parameters were determined: active heat power of heating elements in penetrator and circulation system, mechanical drilling rate, pump flow rate. According to the results of investigations, the experimental model of thermohydraulic reamer-drilling tool will be designed and manufactured for testing in conditions of well 5G.

How to cite: Serbin D.V., Dmitriev A.N. Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter // Journal of Mining Institute. 2022. Vol. 257 . p. 833-842. DOI: 10.31897/PMI.2022.82
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-03-23
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Justification of the technological scheme parameters for the development of flooded deposits of construction sand

Article preview

The article describes the main types of technological schemes for working out the flooded strata of sand deposits using hydraulic shovel excavators. The analysis of scientific and technical literature describing the experience of using hydraulic shovel excavators in the open-pit mining, including pits for the extraction of construction sand, has been carried out. The proposed technological scheme is that the development of reserves of the flooded strata without preliminary water reduction is carried out by a hydraulic shovel excavator from under water by a downward digging with the storage of the extracted rock mass in bulk (for dewatering), placed in such a way that when working out the next mining bench width, it is located within the working area of the excavator for simultaneous processing of the next bench width and loading of dewatered sand from the pile. Calculations of the parameters of the operating platform and the excavator block of the proposed technological scheme for conducting open-pit mining were carried out. The dependence for determining the minimum length of the mining operations front of an excavator for drawing up a technological scheme of operation of a backhoe hydraulic excavator on working out the flooded strata with the pile formation for dewatering sand and its subsequent uploading from the pile by the same excavator is presented.

How to cite: Ivanov V.V., Dzyurich D.O. Justification of the technological scheme parameters for the development of flooded deposits of construction sand // Journal of Mining Institute. 2022. Vol. 253 . p. 33-40. DOI: 10.31897/PMI.2022.3
Oil and gas
  • Date submitted
    2021-02-28
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation

Article preview

One of the development priorities in oil and gas industry is to maintain gas and oil pipeline networks and develop pipeline-connected gas and oil fields of the Arctic zone of the Russian Federation, a promising region the resource potential of which will not only meet a significant portion of internal and external demand for various types of raw materials and primary energy carriers, but will also bring great economic benefits to subsoil users and the state. The mineral and raw material centers of the Nadym-Purskiy and Pur-Tazovskskiy oil and gas bearing areas are among the most attractive regions of the Arctic zone. It is necessary to develop a scientifically substantiated approach to improve the methods of oil transportation from the field to the existing pipelines. As it is known, the task of increasing the efficiency of pipeline transportation of high-viscosity oil is inseparably connected with solving problems in the field of thermal and hydraulic calculation of pipeline system. The article presents the substantiation of dependencies for hydraulic calculation of pipelines transporting high-viscosity oil exhibiting complex rheological properties. Based on the laws of hydraulics for non-Newtonian fluids, the formulas for calculating head losses for fluids obeying Ostwald's law are proposed, their relationship to the classical equations of hydraulics is shown. The theoretical substantiation of looping installation for increasing the efficiency of pipeline transportation of high-viscosity oil taking into account the received dependences for power fluid is considered.

How to cite: Nikolaev A.K., Zaripova N.А. Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation // Journal of Mining Institute. 2021. Vol. 252 . p. 885-895. DOI: 10.31897/PMI.2021.6.10
Mining
  • Date submitted
    2021-01-21
  • Date accepted
    2021-04-19
  • Date published
    2021-04-26

Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives

Article preview

Equipment with diesel engines is used in all mining enterprises. Monorail diesel transport is of great importance in coal mines, as it facilitates the heavy labor of workers when transporting materials and people, fixing mining workings, refueling and repairing equipment, which leads to an increase in the speed of tunneling operations. Reducing the concentration of harmful gases from diesel-hydraulic locomotives at the workplaces of coal mine locomotive drivers can be ensured by the use of additives to diesel fuel that reduce the volume of harmful gas emissions during the operation of diesel-hydraulic locomotives. Additive ester-based on vegetal oil in the amount of 5 mass % in a mixture with hydrotreated diesel fuel reduces the concentration of carbon monoxide by 19-60 %, nitrogen oxides by 17-98 %, depending on the operating mode of the engine, the smoke content of the exhaust gases is reduced to 71 %. There is an improvement in working conditions at the workplace of the driver of a diesel-hydraulic locomotive by the chemical factor due to the reduction of the class of working conditions from 3.1. to 2.

How to cite: Korshunov G.I., Eremeeva A.M., Drebenstedt C. Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives // Journal of Mining Institute. 2021. Vol. 247 . p. 39-47. DOI: 10.31897/PMI.2021.1.5
Oil and gas
  • Date submitted
    2020-06-16
  • Date accepted
    2020-11-09
  • Date published
    2020-12-29

Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology

Article preview

To solve the problems accompanying the development of forecasting methods, a probabilistic method of data analysis is proposed. Using a carbonate object as an example, the application of a probabilistic technique for predicting the effectiveness of proppant hydraulic fracturing (HF) technology is considered. Forecast of the increase in the oil production of wells was made using probabilistic analysis of geological and technological data in different periods of HF implementation. With the help of this method, the dimensional indicators were transferred into a single probabilistic space, which allowed performing a comparison and construct individual probabilistic models. An assessment of the influence degree for each indicator on the HF efficiency was carried out. Probabilistic analysis of indicators in different periods of HF implementation allowed identifying universal statistically significant dependencies. These dependencies do not change their parameters and can be used for forecasting in different periods of time. Criteria for the application of HF technology on a carbonate object have been determined. Using individual probabilistic models, integrated indicators were calculated, on the basis of which regression equations were constructed. Equations were used to predict the HF efficiency on forecast samples of wells. For each of the samples, correlation coefficients were calculated. Forecast results correlate well with the actual increase (values ​​of the correlation coefficient r = 0.58-0.67 for the examined samples). Probabilistic method, unlike others, is simple and transparent. With its use and with careful selection of wells for the application of HF technology, the probability of obtaining high efficiency increases significantly.

How to cite: Galkin V.I., Koltyrin A.N. Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology // Journal of Mining Institute. 2020. Vol. 246 . p. 650-659. DOI: 10.31897/PMI.2020.6.7
Electromechanics and mechanical engineering
  • Date submitted
    2019-07-09
  • Date accepted
    2019-09-07
  • Date published
    2020-04-24

Promising model range career excavators operating time assessment in real operating conditions

Article preview

The development prospects of the mining industry are closely related to the state and development of modern mining machinery and equipment that meet the technical and quality requirements of mining enterprises. Enterprises are focused on a quantitative assessment – the volume of mineral extraction, depending on the functioning efficiency of a promising series of mining machines, which include modern mining excavators. Downtime and unplanned shutdowns of mining excavators directly depend on the operating conditions of the mining machine, which has negative influence on the machine as a whole and its technical condition, which entails a decrease in the efficiency of using expensive mining equipment and economic losses of the mining enterprise. The rationale for external factors that affect the operating time and technical condition of mining excavators is given. For a more detailed assessment of the influence of external influences on the efficiency of operation of mining machines, the influencing factors are divided into two groups: ergatic, directly related to human participation, and factors of a natural-technogenic nature, where human participation is minimized. It was revealed that factors of a natural-technogenic nature have the greatest influence. An algorithm is proposed for a comprehensive assessment of the technical condition and forecasting of operating time both in nominal and in real operating conditions, taking into account factors of a natural and technogenic nature. It is proposed, based on the developed program for planning and evaluating the life of a mining excavator, to adjust the schedules for maintenance and repair (MOT and R) in order to minimize the number of unplanned downtime of a mining excavator and maintain it in good condition.

How to cite: Ivanov S.L., Ivanova P.V., Kuvshinkin S.Y. Promising model range career excavators operating time assessment in real operating conditions // Journal of Mining Institute. 2020. Vol. 242 . p. 228-233. DOI: 10.31897/PMI.2020.2.228
Mining
  • Date submitted
    2019-07-21
  • Date accepted
    2019-09-20
  • Date published
    2020-02-25

Assessment of operational reliability of quarry excavator-dump truck complexes

Article preview

The method proposed in the article is based on the mathematical apparatus for quantitative assessment of the reliability of majority schemes of structural redundancy of transport processes, which provide the availability and usage of several backup delivery channels in the transport process in case of any malfunction. The principle of multi-channel haulage is commonly used in quarries for transportation of overburden and minerals from benches by dump trucks, when excavators and dump trucks performing cyclic operations function as a single excavator-dump truck complex. This pattern of work significantly increases the likelihood of fulfilling the daily plan for transporting rock mass due to the redistribution of dump trucks between mining and overburden excavators in the event of failure of one or more units of mining and handling equipment. The reliability of excavator-dump truck complexes is assessed in three stages: initial data collection for mathematical modeling of excavator-dump truck complex performance; solving the problem of optimizing the distribution of dump trucks between excavators, ensuring maximum productivity of the excavator-dump truck complex; assessment of the reliability of its work depending on the probability of fulfilling the daily plan for the transportation of rock mass. The proposed method is implemented as part of a computer program and makes it possible to automate the operational management of the process of transporting rock mass in a quarry using a mobile application. The developed guidelines can be used for any quarries with automobile transport, regardless of the type of mineral extracted, the mining method, the loading pattern, the capacity of the excavation and loading equipment fleet, and the capacity of operated dump trucks.

How to cite: Kurganov V.M., Gryaznov M.V., Kolobanov S.V. Assessment of operational reliability of quarry excavator-dump truck complexes // Journal of Mining Institute. 2020. Vol. 241 . p. 10-21. DOI: 10.31897/PMI.2020.1.10
Electromechanics and mechanical engineering
  • Date submitted
    2020-01-09
  • Date accepted
    2020-01-26
  • Date published
    2020-02-25

Mining excavator working equipment load forecasting according to a fuzzy-logistic model

Article preview

Due to the fact that the loads occurring in the working equipment of mining excavators are determined by a large number of random factors that are difficult to represent by analytical formulas, for estimating and predicting loads the models must be introduced using non-standard approaches. In this study, we used the methodology of the theory of fuzzy logic and fuzzy pluralities, which allows to overcome the difficulties associated with the incompleteness and vagueness of the data in assessing and predicting the forces encountered in the working equipment of mining excavators, as well as with the qualitative nature of these data. As a result of computer simulation in the fuzzyTECH environment, data comparable with experimental studies were obtained to determine the level of loading of the main elements of the working equipment of mining excavators. Based on a representative sample, a statistical analysis of the data was performed, as a result of which the equation of linear multiple stress regression in the handle of mining excavators was obtained, which allows to make an accurate forecast of the loading of the working equipment of the excavator.

How to cite: Velikanov V.S. Mining excavator working equipment load forecasting according to a fuzzy-logistic model // Journal of Mining Institute. 2020. Vol. 241 . p. 29-36. DOI: 10.31897/PMI.2020.1.29
Electromechanics and mechanical engineering
  • Date submitted
    2017-08-25
  • Date accepted
    2017-11-17
  • Date published
    2018-02-22

Improved estimation of open pit excavator capacity

Article preview

The paper addresses issues related to estimation of operational time for open pit excavators during truck loading operations. The author analyzes the method of annual capacity estimation and highlights disagreements in different ways of operational time logging. Recommendations are offered concerning estimation of excavator capacity taking into account its repair cycle. The paper contains an analysis of the cyclical nature of various types of maintenance in the interval between capital repairs as a function of operational time. Guidelines are proposed that allow to calculate annual production days of the excavator with regards to the repair cycle and adjusted utilization coefficient throughout the shift. It has been established that decreasing the coefficient of excavator utilization throughout the shift and more precise logging of annual work days lead to a slower decrease in estimated machine capacity than the one described in the reference literature. According to the suggested method, estimated excavator capacity is more than 23 % higher than the value stated in the reference literature.

How to cite: Zharikov S.N. Improved estimation of open pit excavator capacity // Journal of Mining Institute. 2018. Vol. 229 . p. 56-61. DOI: 10.25515/PMI.2018.1.56
Geotechnology for development of solid mining fields
  • Date submitted
    2013-07-26
  • Date accepted
    2013-09-22
  • Date published
    2014-03-17

Parameters of removing the overburden for deposits complex structure of carbonate rocks

Article preview

The main features of the development of Open-complex structure of carbonate rocks. The dependence for the determination of dozing on the domestic heap career, moving overburden on bestransportnoy scheme in goaf. Found that the optimum length of excavator block executed by one parking dragline at quarries carbonate rocks is achieved with the minimum total cost of doing the work of overburden and waste associated with the removal of the overburden.

How to cite: Ivanov V.V. Parameters of removing the overburden for deposits complex structure of carbonate rocks // Journal of Mining Institute. 2014. Vol. 207 . p. 33-35.