-
Date submitted2024-05-17
-
Date accepted2024-10-14
-
Date published2024-11-12
Black shales – an unconventional source of noble metals and rhenium
The content of noble metals and rhenium in the Lower Paleozoic black shales of the eastern Baltic paleobasin in Russia was estimated. Shales are enriched in platinoids (PGM to 0.12 g/t) and rhenium (to 1.54 g/t). The main accessory elements of noble metals and Re are U, V, Mo, Cu, and Ni. Black shales consist of organic (9-26 rel.%), clay (40-60 rel.%), and silt-sandy (25-50 rel.%) components and a nodule complex (2-5 rel.%) (carbonate, sulfide, phosphate and silicate nodules). Noble metals occur sporadically in the silt-sandy admixture as native forms and intermetallics: Aunat, Au-Ag, Au-Cu, Au-(Cu)-Hg, Au-Hg, Ag-Cu, Pt-Fe. Micromineral phases of noble metals were found in diagenetic sulfides: Aunat, chalcopyrite with Au admixture, pyrite with platinoid admixture. Clay fraction is 10-fold enriched in noble metals as compared to shale – to 0.28 g/t Au, 0.55 g/t Pt, 1.05 g/t Pd, and 1.56 g/t Re. Organic matter sorbs noble metals to a limited extent but accumulates rhenium. Pore space of black shales contains a colloidal salt component (submicron fraction) which is represented by particles smaller than 1,000 nm. The share of submicron fraction in black shales is 0.1-6 wt.%. The submicron fraction contains on average: PGM – 14 g/t, Au – 0.85 g/t, and Re – 4.62 g/t. The geochemical resource of noble metals (Au, Pt, Pd), Re and the accessory elements (U, V, Mo, Cu, and Ni) for black shales as a whole and their submicron fraction was estimated. Black shales are recommended as an integrated source of raw materials.
-
Date submitted2024-04-09
-
Date accepted2024-06-03
-
Date published2024-07-04
Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies
Nature-like technologies are being introduced into many human activities including mining wastewater treatment. This work is based on long-term studies of the Sibay copper-zinc-pyrite deposit development. It is dedicated to assessment of geochemical barriers effectiveness in Cu, Zn, Cd removal from water of the Karagayly River (receiving quarry and dump drainage water). The research is based on the elements’ content and forms in water and bottom sediments, pH values etc. Four types of hydrogeochemical environment (formed due to changes in the water use over the past 20 years) were distinguished using discriminant analysis. The mechanisms of barriers formation and destruction were described. Statistical modeling of the metals’ precipitation was performed by multivariate regression analysis. Cu is adsorbed by recently formed Fe hydroxides, and, to a lesser extent, precipitates with sulfates as water pH increases. Antagonism to Mn hydroxides has been demonstrated, due to different physicochemical conditions for their precipitation. Zn enters solid phase mainly with sulfates, this element also forms its own mineral phases. The second mechanism is adsorption by recently formed Mn hydroxides, which corresponds to the idea of similar conditions for the precipitation of metal hydroxides. Cd behavior reflects conditions intermediate between these of Cu and Zn. Contribution of both mechanisms (related to Fe hydroxides and aqueous sulfates) is equal. Antagonism to Mn is absent. According to the assessment results using of nature-like technologies in situ in watercourses, canals and other water drainage systems is promising. Developed statistical models can be used for needs of experimental studies and artificial geochemical barriers engineering.
-
Date submitted2023-04-13
-
Date accepted2023-10-25
-
Date published2025-02-25
Assessment of the ecological state of aquatic ecosystems by studying lake bottom sediments
- Authors:
- Mariya A. Chukaeva
- Tatyana V. Sapelko
The article presents the results of coupled palynological and geochemical studies of five various genesis lakes, located along the route of the expedition “In the footsteps of Alexander von Humboldt in Siberia, Altai and Eastern Kazakhstan”, dedicated to the double anniversary: the 190th anniversary of the expedition across Russia of the famous scientist and his 250th birthday. A geochemical analysis of water and bottom sediments of Ik Lake (Siberia), Lakes Kolyvanskoe and Beloe (Altai), Lake Bezymyannoe (Kazakhstan) and Nagornyi Pond (Altai) was carried out. Based on their results an assessment of studied lakes ecological state was given through single and integral criteria. A high level of pollution was noted for Nagornyi Pond and Lake Bezymyannoe, which is caused by a significant technogenic load from nearby mines. This is consistent with the data of palynological research. The aquatic ecosystems of Lakes Kolyvanskoe and Beloe are characterized by a satisfactory ecological situation, but they experience an increased recreational load. The results of spore-pollen analysis and analysis of non-pollen palynomorphs showed the low ability of these lakes to self-healing. The most favorable ecological state and high self-cleaning capacity were noted for Lake Ik, which is consistent with the data of palynological studies. It is being confirmed with the results of palynological studies. It was therefore concluded about the ability to make a quick assessment of the aquatic ecosystems’ ecological state by studying lakes using coupled palynological and geochemical analysis.
-
Date submitted2022-04-11
-
Date accepted2022-06-15
-
Date published2022-07-26
Magma feeding paleochannel in the Monchegorsk ore region: geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia)
A comprehensive study of a 340 m thick lenticular-sheet body of ultramafic composition penetrated by structural well M-1 at a depth of about 2.2 km was accomplished. Its main volume is composed of plagioharzburgite; fine-grained rocks of norite and orthopyroxenite chilling zones are preserved on endocontacts. The rocks of the body are similar in composition to the rocks near the underlying ore-bearing layered intrusion – the Monchepluton. The age of intrusion of the ultramafic body is 2510 ± 9 Ma (U-Pb, ID-TIMS, zircon) and, taking into account analytical errors, is comparable with the formation period of the Monchepluton (2507-2498 Ma). According to the study of the Sm-Nd system in rocks and minerals, a positive value of the e Nd (+1.1) parameter was established, similar to that in dunites and chromitites of the Monchepluton. Based on these results, the ultramafic body penetrated at depth was assigned to the magma feeding paleochannel through which the ultramafic, weakly contaminated magma entered the overlying magma chamber. This body is a unique example of a magma-feeding system for the ore-bearing layered intrusion of Precambrian age.
-
Date submitted2020-10-13
-
Date accepted2021-03-02
-
Date published2021-04-26
Trace element accumulation by soils and plants in the North Caucasian geochemical province
Long-term studies of the North Caucasian geochemical province allowed to establish regional abundances and calculate accumulation (dispersion) factors for chemical elements in rocks, soils, and plants. Certain natural regional patterns characterize the province. Associations of elements in high and low concentrations are often determined by the predominant composition of rocks: carbonate-terrigenous, terrigenous, and igneous. The study of the average contents of several chemical elements in the soils of the province showed that the association of accumulated elements includes metals with different migration characteristics. Thus, despite the rather close values of the ionic radii, Pb, Zn, Cu, and Li (judging by the ionic potential) are characterized by the formation of cations, while Mn, Mo, and Zr form complex ions. Such elements as Zn, Cu, and Pb are mainly accumulated on hydrosulfuric barriers, while Mo, Co, and Mn are stopped by oxygenous barriers. For Cu, Zn, Mo, and Co, biogenic accumulation plays a significant role, while for Pb and Ni it is practically absent. The absolute dispersion of the elements did not reach environmentally hazardous values, although it indicates a fairly intensive migration. In woody plants, Ba, Nb, Sc, Sr, and Zn are accumulated most intensively.
-
Date submitted2018-07-12
-
Date accepted2018-09-16
-
Date published2018-12-21
Environmental Geochemical Assessment of Technogenic Soils
- Authors:
- G. I. Sarapulova
The purpose of this study was to obtain diagnostic features and criteria for the distribution of heavy metals in technogenically altered soils in the area of industrial facilities, depending on their altered geochemical properties, which make it possible to fix chemical elements in landscapes (the formation of geochemical barriers). On the basis of the geoecological assessment, disturbance of the soil buffer properties, which is reflected in the ionic composition change, alkalization, pH increase, and sulfate-chloride salinization have been revealed. This forms the heavy metals alkaline barrier. For example, in case of Cu, Pb, Zn, and N, it contributes to their accumulation and subsequent concentration in the soil layer due to the exchange interactions between chemical elements and Na + , K + , Ca 2+ cations. Soil saturation with sulphates also increases the probability of metals demobilization in the soil layer. It has been shown that intra-sectional soil migration of oil products (one of the most common pollutants of industrial areas) and chemical elements occurs at a depth of 30-50 cm, where the oil products based on a clay sorption layer form a technogenic barrier.
-
Date submitted2014-11-08
-
Date accepted2015-01-27
-
Date published2015-10-26
Geochemistry of ore-forming hydrothermal fluids of the World ocean
- Authors:
- C. M. Sudarikov
- M. V. Zmievskii
The most complete results of the study of hydrothermal ore-forming solutions geochemistry in the Russian and international expeditions to deep-sea hydrothermal fields of the world ocean are analyzed. Solutions of both high and low salinity with respect to seawater are formed in the discharge zone of fluids. Positive correlation of ore components with the chloride ion and negative one with the pH value may indicate the migration of components in acidic hydrothermal solutions in the form of chloride complexes. Hydrogen sulfide is associated with the significant positive correlation with metals, which indicates reducing conditions forming in ore-bearing hydrothermal solutions. This is confirmed by the close relationship of ore components with hydrogen. The transfer of metals mainly in the form of chloride complexes at high temperatures of the solution is confirmed by the results of our thermodynamic modeling. Methane is characterized by negative dependence on temperature and concentration of ore components, associated with positive dependence on pH and negative one on hydrogen sulfide. Each of the observed dependencies can testify against abiotic theory of income of methane in hydrothermal solutions. The following geochemical indicators are the most promising for the discovery of new ore deposits and the organization of geochemical monitoring during the development of already discovered fields: Eh, pH, Cl, Fe, Mn, H 2 S, CO 2 , H 2 and possibly CH 4 .