Submit an Article
Become a reviewer
Vol 277
Pages:
146-156
In press
Article
Geology

Accumulation of impurity elements under hydrothermal crystallization of pyrite: selectivity of surface phases

Authors:
Sergei V. Lipko1
Aleksandr V. Nikolaev2
Dmitrii N. Babkin3
Vladimir L. Tauson4
About authors
  • 1 — Ph.D. Senior Researcher Vinogradov Institute of Geochemistry, SB RAS ▪ Orcid
  • 2 — Leading Engineer Vinogradov Institute of Geochemistry, SB RAS ▪ Orcid
  • 3 — Leading Engineer Vinogradov Institute of Geochemistry, SB RAS ▪ Orcid
  • 4 — Ph.D., Dr.Sci. Chief Researcher Vinogradov Institute of Geochemistry, SB RAS ▪ Orcid
Date submitted:
2025-06-16
Date accepted:
2025-12-09
Online publication date:
2026-02-16

Abstract

Limited data on the behavior of impurity elements during the formation of ore minerals in hydrothermal systems reduce their potential as indicators of the physicochemical conditions of ore formation. One of the most common sulfides capable of concentrating precious metals and other valuable components is pyrite. The distribution of a number of typomorphic impurity elements in pyrite under its crystallization in hydrothermal conditions at a temperature of 450 °C and a pressure of 1 kbar was studied. Using X-ray spectral microanalysis, scanning electron microscopy, and inductively coupled plasma and laser ablation mass spectrometry, data were obtained on the forms of occurrence, content ratios, and correlation relationships of impurity elements in the volume and surface layer of pyrite crystals. For the first time, the parameter S of surface phase selectivity with respect to main (Co, Cu, Ni) and minor impurities (noble metals, As, Zn, Mn) was determined, which averaged 1.9 (Co), 2.1 (Cu), 1.3 (Ni), 4.2 (Pd), 18.5 (Au), 6 (As), 10.2 (Zn), and 9.1 (Mn). The correlations between elements are significantly different for the surface and volume, which is explained by the influence of surface phase selectivity. The dual nature of the correlation between Au and As allows their relationship to be considered a surface phenomenon. Palladium, a critically important metal widely used in chemical catalysis and other areas of technology, exhibits unusual behavior in pyrite, concentrating mainly on its surface, which suggests the possibility of its concurrent extraction from pyrite ores at gold extraction enterprises. The observed correlations are considered from the perspective of the incorporation of impurity elements into the bulk structure of pyrite and into the compositions of surface phase-like formations (non-autonomous phases) that evolve during crystal growth and are enriched with incompatible elements.

Область исследования:
Geology
Keywords:
hydrothermal synthesis pyrite impurity elements distribution surface selectivity LA-ICP-MS
Go to volume 277

Funding

The research was supported by Russian Science Foundation grant N 24-27-00140, https://rscf.ru/project/24-27-00140/.

References

  1. Tauson V.L., Lipko S.V., Smagunov N.V., Kravtsova R.G. Trace Element Partitioning Dualism under Mineral–Fluid Interaction: Origin and Geochemical Significance. Minerals. 2018. Vol. 8. Iss. 7. N 282. DOI: 10.3390/min8070282
  2. Lipko S., Tauson V., Smagunov N., Babkin D., Parkhomenko I. Distribution of Trace Elements (Ag, Pd, Cd, and Mn) between Pyrite and Pyrrhotite and Selectivity of Surficial Nonautonomous Phases in a Hydrothermal System. Minerals. 2022. Vol. 12. Iss. 9. N 1165. DOI: 10.3390/min12091165
  3. Vukmanovic Z., Reddy S.M., Godel B. et al. Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores. Lithos. 2014. Vol. 184-187, p. 42-61. DOI: 10.1016/j.lithos.2013.10.037
  4. Fougerouse D., Reddy S.M., Sumail et al. Dislocation-mediated interfacial re-equilibration of pyrite: An alternative model to interface-coupled dissolution-reprecipitation and gold remobilisation. Geochimica et Cosmochimica Acta. 2024. Vol. 374, p. 136-145. DOI: 10.1016/j.gca.2024.04.027
  5. King S.A., Cook N.J., Ciobanu C.L. et al. Coupled Microstructural EBSD and LA-ICP-MS Trace Element Mapping of Pyrite Constrains the Deformation History of Breccia-Hosted IOCG Ore Systems. Minerals. 2024. Vol. 14. Iss. 2. N 198. DOI: 10.3390/min14020198
  6. Vikentyev I.V. Invisible and Microscopic Gold in Pyrite: Methods and New Data for Massive Sulfide Ores of the Urals. Geology of Ore Deposits. 2015. Vol. 57. N 4, p. 237-265. DOI: 10.1134/S1075701515040054
  7. Gopon P., Douglas J.O., Auger M.A. et al. A Nanoscale Investigation of Carlin-Type Gold Deposits: An Atom-Scale Elemental and Isotopic Perspective. Economic Geology. 2019. Vol. 114. N 6, p. 1123-1133. DOI: 10.5382/econgeo.4676
  8. Tolstykh N., Bortnikov N., Zhukova I. et al. Trace elements in pyrite from Ausingle bond Ag epithermal deposits of Kamchatka, Russia: Comparison with geochemical features of mineral systems. Journal of Geochemical Exploration. 2025. Vol. 275. N 107774. DOI: 10.1016/j.gexplo.2025.107774
  9. Guotao Sun, Qingdong Zeng, Lingli Zhou et al. Mechanisms for invisible gold enrichment in the Liaodong Peninsula, NE China: In situ evidence from the Xiaotongjiapuzi deposit. Gondwana Research. 2022. Vol. 103, p. 276-296. DOI: 10.1016/j.gr.2021.10.008
  10. Kexin Wang, Degao Zhai, Jiajun Liu, Han Wu. LA-ICP-MS trace element analysis of pyrite from the Dafang gold deposit, South China: Implications for ore genesis. Ore Geology Reviews. 2021. Vol. 139. Part A. N 104507. DOI: 10.1016/j.oregeorev.2021.104507
  11. Yumiao Meng, Xiaowen Huang, Chunxia Xu, Songning Meng. Trace element and sulfur isotope compositions of pyrite from the Tianqiao Zn–Pb–Ag deposit in Guizhou province, SW China: implication for the origin of ore-forming fluids. Acta Geochimica. 2022. Vol. 41. Iss. 2, p. 226-243. DOI: 10.1007/s11631-021-00511-0
  12. Lei Yan, Xianzheng Guo, Yu Fan et al. The occurrence of cobaltite nanoparticles in pyrite from the De’erni deposit, NW China. Ore Geology Reviews. 2024. Vol. 173. N 106268. DOI: 10.1016/j.oregeorev.2024.106268
  13. Bralia A., Sabatini G., Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita. 1979. Vol. 14. Iss. 3, p. 353-374. DOI: 10.1007/BF00206365
  14. Volkov A.V., Sidorov A.A. Invisible gold. Herald of the Russian Academy of Sciences. 2017. Vol. 87. N 1, p. 40-48. DOI: 10.1134/S1019331617010051
  15. Palyanova G.A. Gold and Silver Minerals in Sulfide Ore. Geology of Ore Deposits. 2020. Vol. 62. N 5, p. 383-406. DOI: 10.1134/S1075701520050050
  16. Molchanov V.P. Development of approaches to the creation of technology for extracting “invisible” gold from the ores of the Sukhoe deposit (Primorye). Proceedings of the Voronezh State University of Engineering Technologies. 2022. Vol. 84. N 3, p. 177-182 (in Russian). DOI: 10.20914/2310-1202-2022-3-177-182
  17. Hongping He, Haiyang Xian, Jianxi Zhu et al. Evaluating the physicochemical conditions for gold occurrences in pyrite. American Mineralogist. 2023. Vol. 108. N 1, p. 211-216. DOI: 10.2138/am-2022-8207
  18. Tauson V.L., Lustenberg E.K. Quantitative determination of modes of gold occurrence in minerals by the statistical analysis of analytical data samplings. Geochemistry International. 2008. Vol. 46. N 4, p. 423-428. DOI: 10.1134/S0016702908040101
  19. Tauson V.L., Babkin D.N., Lustenberg E.E. et al. Surface typochemistry of hydrothermal pyrite: Electron spectroscopic and scanning probe microscopic data. I. Synthetic pyrite. Geochemistry International. 2008. Vol. 46. N 6, p. 565-577. DOI: 10.1134/S0016702908060037
  20. Tauson V.L. Gold solubility in the common gold-bearing minerals: Experimental evaluation and application to pyrite. European Journal of Mineralogy. 1999. Vol. 11. N 6, p. 937-947. DOI: 10.1127/ejm/11/6/0937
  21. Deditius A.P., Reich M., Kesler S.E. et al. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta. 2014. Vol. 140, p. 644-670. DOI: 10.1016/j.gca.2014.05.045
  22. Filimonova O.N., Tagirov B.R., Trigub A.L. et al. The state of Au and As in pyrite studied by X-ray absorption spectroscopy of natural minerals and synthetic phases. Ore Geology Reviews. 2020. Vol. 121. N 103475. DOI: 10.1016/j.oregeorev.2020.103475
  23. Kusebauch C., Gleeson S.A., Oelze M. Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits. Science Advances. 2019. Vol. 5. Iss. 5. N eaav5891. DOI: 10.1126/sciadv.aav5891
  24. Ya-Fei Wu, Evans K., Si-Yu Hu et al. Decoupling of Au and As during rapid pyrite crystallization. Geology. 2021. Vol. 49. N 7, p. 827-831. DOI: 10.1130/G48443.1
  25. Merkulova M., Mathon O., Glatzel P. et al. Revealing the Chemical Form of “Invisible” Gold in Natural Arsenian Pyrite and Arsenopyrite with High Energy-Resolution X-ray Absorption Spectroscopy. ACS Earth and Space Chemistry. 2019. Vol. 3. Iss. 9, p. 1905-1914. DOI: 10.1021/acsearthspacechem.9b00099
  26. Kovalchuk E.V., Tagirov B.R., Borisovsky S.E. et al. Gold and Arsenic in Pyrite and Marcasite: Hydrothermal Experiment and Implications to Natural Ore-Stage Sulfides. Minerals. 2024. Vol. 14. Iss. 2. N 170. DOI: 10.3390/min14020170
  27. Xiao-Wen Huang, Yu-Miao Meng, Tao Long, Liang Qi. Cobalt mineralization in an evolving skarn system: Insights from co-bearing minerals in the Cihai Fe-Co deposit, NW China. Journal of Asian Earth Sciences. 2025. Vol. 290. N 106674. DOI: 10.1016/j.jseaes.2025.106674
  28. Román N., Reich M., Leisen M. et al. Geochemical and micro-textural fingerprints of boiling in pyrite. Geochimica et Cosmochimica Acta. 2019. Vol. 246, p. 60-85. DOI: 10.1016/j.gca.2018.11.034
  29. Baisong Du, Zuoman Wang, Santosh M. et al. Role of metasomatized mantle lithosphere in the formation of giant lode gold deposits: Insights from sulfur isotope and geochemistry of sulfides. Geoscience Frontiers. 2023. Vol. 14. Iss. 5. N 101587. DOI: 10.1016/j.gsf.2023.101587
  30. Hanwen Yang, Baisong Du, Santosh M. et al. Role of As in the formation of giant Au deposits: Insights from sulfur isotope and geochemistry of pyrite from the Shuangwang Au deposit, West Qinling, central China. Ore Geology Reviews. 2024. Vol. 175. N 106363. DOI: 10.1016/j.oregeorev.2024.106363
  31. Filimonova O.N., Snigireva I.I., Thompson P., Wermeille D. Incorporation of palladium into pyrite: Insights from X-ray absorption spectroscopy analysis and modelling. Science of the Total Environment. 2024. Vol. 920. N 170927. DOI: 10.1016/j.scitotenv.2024.170927
  32. ShiWen Xie, FuLai Liu, HuiNing Wang et al. Micro- to nanoscale cobalt occurrence in Co-enriched pyrite: A case study from Dahenglu Cu-Co deposit. Acta Petrologica Sinica. 2024. Vol. 40. Iss. 10, p. 3028-3036. DOI: 10.18654/1000-0569/2024.10.05
  33. Fleet M.E., Mumin A.H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist. 1997. Vol. 82. N 1-2, p. 182-193. DOI: 10.2138/am-1997-1-220
  34. Deditius A.P., Reich M. Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite. American Mineralogist. 2016. Vol. 101. N 6, p. 1451-1459. DOI: 10.2138/am-2016-5603
  35. Romanchenko A.S., Mikhlin Yu.L. An XPS study of products formed on pyrite and pyrrhotine by reacting with palladium(II) chloride solutions. Journal of Structural Chemistry. 2015. Vol. 56. N 3, p. 531-537. DOI: 10.1134/S002247661503021X
  36. Tauson V.L. The Principle of Continuity of Phase Formation at Mineral Surfaces. Doklady Earth Sciences. 2009. Vol. 425A. N 3, p. 471-475. DOI: 10.1134/S1028334X09030283

Similar articles

High-alumina gneisses of the Chupa Formation in the Belomorian Mobile Belt: metamorphic conditions, partial melting, and the age of migmatites
2026 Anastasiya V. Yurchenko, Shauket K. Baltybaev, Tatyana A. Myskova
Assessment of reliability parameters for workshop power supply circuits in mining enterprises with single-transformer substations under various redundancy methods
2026 Renata M. Petrova
Development of a composition and evaluation of the effectiveness of a bio-based product for cleaning oil-contaminated soils
2026 Aleksandr S. Danilov, Irina D. Sosnina, Elizaveta A. Serdyukova
Physical-geological models of coastal areas based on petrophysical and electric resistivity tomographic modelling
2026 Vladimir V. Glazunov, Yiqiang Ren, Danil I. Zelikman, Vladimir A. Shevnin
Physical properties of Paleozoic-Mesozoic deposits from wells in the South Barents Basin
2026 Vadim L. Ilchenko
Mechanism of microcrack zone formation in rock samples of various lithological types under triaxial stress state fracture conditions
2026 Vladimir L. Trushko, Mikhail D. Ilinov, Aleksandr O. Rozanov, Malik M. Saitgaleev, Dmitrii N. Petrov, Daniil A. Karmanskii, Aleksandr A. Selikhov