Submit an Article
Become a reviewer
Article
Geology

High-alumina gneisses of the Chupa Formation in the Belomorian Mobile Belt: metamorphic conditions, partial melting, and the age of migmatites

Authors:
Anastasiya V. Yurchenko1
Shauket K. Baltybaev2
Tatyana A. Myskova3
About authors
  • 1 — Ph.D. Researcher Institute of Precambrian Geology and Geochronology RAS ▪ Orcid
  • 2 — Ph.D., Dr.Sci. Chief Researcher Institute of Precambrian Geology and Geochronology RAS ▪ Orcid
  • 3 — Ph.D. Senior Researcher Institute of Precambrian Geology and Geochronology RAS ▪ Orcid
Date submitted:
2025-01-29
Date accepted:
2025-07-02
Online publication date:
2025-12-11

Abstract

Migmatized gneisses of the Chupa paragneiss Formation in the Belomorian Mobile Belt (BMB) of the Fennoscandian Shield have been studied, and the conditions of partial melting during high-grade metamorphism of the rocks were determined. The melting temperatures and pressures, the amount and composition of the melt formed during the anatexis of gneisses in a closed system, were assessed through direct thermodynamic computer modeling of mineral formation and the construction of pseudosections in pressure-temperature coordinates. The mineral formation calculations are based on the principle of Gibbs energy minimization and were performed using the PERPLE_X software package. The bulk compositions of the migmatized rocks from the Chupa Formation, previously classified and grouped based on their major components, were used for the calculations. It is shown that water-saturated partial melting of compositionally diverse gneisses produces granitic or granodiorite-tonalitic melts within a temperature range of 680-730 °C at moderate to moderately high pressures. The study reveals that the key factor controlling the appearance of kyanite in the investigated rocks is a high Al2O3/CaO ratio (at least 5:1) in the protolith, combined with a total alkali content (Na2O + K2O) exceeding CaO. According the Chemical Index of Alteration (CIA), the protoliths of the gneisses contained detrital material of varying sedimentary maturity. The source rocks were likely weakly to moderately weathered. U-Pb ID-TIMS dating of monazite from two samples of garnet-kyanite-biotite migmatite (whole-rock analysis) indicates Paleoproterozoic migmatization of the Chupa gneisses at 1854 ± 5 Ma. This phase of Paleoproterozoic endogenic activity is widely recorded in the BMB and may be associated with the formation of the Lapland-Kola or Svecofennian orogens, located to the northeast and southwest of the belt, respectively.

Область исследования:
Geology
Keywords:
migmatites Belomorian Mobile Belt protolith kyanite Chupa gneisses partial melting dating modeling
Online First

Funding

The research was carried out at the expense of a grant from the Russian Science Foundation N 25-27-00117.

References

  1. Mingguo Zhai, Xiyan Zhu, Yanyan Zhou et al. Continental crustal evolution and synchronous metallogeny through time in the North China Craton. Journal of Asian Earth Sciences. 2020. Vol. 194. N 104169. DOI: 10.1016/j.jseaes.2019.104169
  2. Emo R.B., Kamber B.S. Evidence for highly refractory, heat producing element-depleted lower continental crust: Some implications for the formation and evolution of the continents. Chemical Geology. 2021. Vol. 580. N 120389. DOI: 10.1016/j.chemgeo.2021.120389
  3. Touret J.L.R., Santosh M., Huizenga J.M. Composition and evolution of the continental crust: Retrospect and prospect. Geoscience Frontiers. 2022. Vol. 13. Iss. 5. N 101428. DOI: 10.1016/j.gsf.2022.101428
  4. Marimon R.S., Hawkesworth C.J., Dantas E.L. et al. The generation and evolution of the Archean continental crust: The granitoid story in southeastern Brazil. Geoscience Frontiers. 2022. Vol. 13. Iss. 4. N 101402. DOI: 10.1016/j.gsf.2022.101402
  5. Sakyi P.A., Kwayisi D., Nunoo S. et al. Crustal evolution of alternating Paleoproterozoic belts and basins in the Birimian terrane in southeastern West African Craton. Journal of African Earth Sciences. 2024. Vol. 220. N 105449. DOI: 10.1016/j.jafrearsci.2024.105449
  6. Wen-Bin Xue, Shao-Cong Lai, Yu Zhu et al. Generation of Neoproterozoic granites of the Huangling batholith in the northern Yangtze Block, South China: Implications for the evolution of the Precambrian continental crust. Journal of Asian Earth Sciences. 2025. Vol. 277. N 106395. DOI: 10.1016/j.jseaes.2024.106395
  7. Alekseev V.I. Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia. Journal of Mining Institute. 2020. Vol. 243, p. 259-265. DOI: 10.31897/PMI.2020.3.259
  8. Marin Yu.B., Smolensky V.V., Beskin S.M. Classification of Rare-Metal Alkali Granites. Geology of Ore Deposits. 2024. Vol. 66. N 7, p. 905-913. DOI: 10.1134/S1075701524700132
  9. Lehmann B. Formation of tin ore deposits: A reassessment. Lithos. 2021. Vol. 402-403. N 105756. DOI: 10.1016/j.lithos.2020.105756
  10. Yong-Fei Zheng, Peng Gao. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos. 2021. Vol. 402-403. N 106232. DOI: 10.1016/j.lithos.2021.106232
  11. Qiong-Xia Xia, Meng Yu, Er-Lin Zhu et al. Two generations of crustal anatexis in association with two-stage exhumation of ultrahigh-pressure metamorphic rocks in the Dabie orogen. Lithos. 2023. Vol. 446-447. N 107146. DOI: 10.1016/j.lithos.2023.107146
  12. Shaoji Yang, Yanru Song, Haijin Xu et al. Paleoproterozoic ultrahigh-temperature metamorphism and anatexis of the pelitic granulites in the Kongling terrane, South China. Precambrian Research. 2024. Vol. 414. N 107591. DOI: 10.1016/j.precamres.2024.107591
  13. Guangyu Huang, Jinghui Guo, Richard Palin. Phase equilibria modeling of anatexis during ultra-high temperature metamorphism of the crust. Lithos. 2021. Vol. 398-399. N 106326. DOI: 10.1016/j.lithos.2021.106326
  14. Haobo Wang, Shuyun Cao, Junyu Li et al. High-pressure granulite-facies metamorphism and anatexis of deep continental crust: New insights from the Cenozoic Ailao Shan–Red River shear zone, Southeast Asia. Gondwana Research. 2022. Vol. 103, p. 314-334. DOI: 10.1016/j.gr.2021.10.010
  15. Guangyu Huang, Hao Liu, Jinghui Guo et al. Partial melting mechanisms of peraluminous felsic magmatism in a collisional orogen: An example from the Khondalite belt, North China craton. Journal of Metamorphic Geology. 2024. Vol. 42. Iss. 6, p. 817-841. DOI: 10.1111/jmg.12774
  16. Early Precambrian of the Baltic shield. Ed. by V.A.Glebovitskii. Saint-Petersburg: Nauka, 2005, p. 711 (in Russian).
  17. Glebovitskii V.A., Sedova I.S., Larionov A.N., Berezhnaya N.G. Isotopic Timing of the Magmatic and Metamorphic Events at the Turn of the Archean and Proterozoic within the Belomorian Belt, Fenno-Scandinavian Shield. Doklady Earth Sciences. 2017. Vol. 476. Part 2, p. 1143-1146. DOI: 10.1134/S1028334X1710004X
  18. Volodichev O.I. Belomorian Complex of Karelia. Geology and Petrology. Leningrad: Nauka, 1990, р. 245 (in Russian).
  19. Slabunov A.I., Azimov P.Ya., Glebovitskii V.A. et al. Archaean and Palaeoproterozoic Migmatizations in the Belomorian Province, Fennoscandian Shield: Petrology, Geochronology, and Geodynamic Settings. Doklady Earth Sciences. 2016. Vol. 467. Part 1, p. 259-263. DOI: 10.1134/S1028334X16030077
  20. Myskova T.A., Glebovitskii V.A., Miller Yu.V. et al. Supracrustal Sequences of the Belomorian Mobile Belt: Protoliths, Age, and Origin. Stratigraphy and Geological Correlation. 2003. Vol. 11. N 6, p. 535-549.
  21. State Geological Map of the Russian Federation, Scale 1:200000. Izdanie 2-e. Seriya Karelskaya. List Q-36-XV, XVI (Loukhi). Obyasnitelnaya zapiska. Moscow: Moskovskii filial “VSEGEI”, 2021, p. 109 (in Russian).
  22. Ruchev A.M. On the protolith of the North Karelian gneisses of the Chupa Formation, Belomorian Complex. Geologiya i poleznye iskopaemye Karelii. Petrozavodsk: Karelskii nauchnyi tsentr RAN, 2000. Iss. 2, p. 12-25 (in Russian).
  23. Bibikova E.V., Borisova E.Yu., Drugova G.M., Makarov V.A. Metamorphic History and Age of Aluminous Gneisses of the Belomorian Mobile Belt on the Baltic Shield. Geokhimiya. 1997. N 9, p. 883-893 (in Russian).
  24. Drugova G.M. Peculiarities of the early Precambrian metamorphism in Eastern and Western parts of the Belomorsky folded belt (Baltic shield). Zapiski Vserossiiskogo mineralogicheskogo оbshchestva. 1996. Vol. 125. N 2, p. 24-38 (in Russian).
  25. Skublov S.G., Azimov P.Ya., Li X.-H. et al. Polymetamorphism of the Chupa шддшеу of the Belomorian Mobile Belt (Fennoscandia): Evidence from the Isotope-Geochemical (U-Pb, REE, O) Study of Zircon. Geochemistry International. 2017. Vol. 55. N 1, p. 47-59. DOI: 10.1134/S0016702917010098
  26. Steiger R.H., Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters. 1977. Vol. 36. Iss. 3, p. 359-362. DOI: 10.1016/0012-821X(77)90060-7
  27. Connolly J.A.D. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science. 1990. Vol. 290. Iss. 6, p. 666-718. DOI: 10.2475/ajs.290.6.666
  28. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology. 2011. Vol. 29. Iss. 3, p. 333-383. DOI: 10.1111/j.1525-1314.2010.00923.x
  29. White R.W., Powell R., Holland T.J.B. et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology. 2014. Vol. 32. Iss. 3, p. 261-286. DOI: 10.1111/jmg.12071
  30. Pettijohn F.J., Potter P.E., Siever R. Sand and Sandstone. Springer-Verlag, 1972, p. 634.
  31. Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 1982. Vol. 299. Iss. 5885, p. 715-717. DOI: 10.1038/299715a0
  32. Yurchenko A.V., Baltybaev S.K., Volkova Yu.R., Malchushkin E.S. The Mineralogical Composition, Metamorphic Parameters, and Protoliths of Granulites from the Larba Block of the Dzhugdzhur–Stanovoy Fold Area. Russian Journal of Pacific Geology. 2024. Vol. 18. N 2, p. 130-149. DOI: 10.1134/S181971402402009X
  33. Cox R., Lowe D.R., Cullers R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta. 1995. Vol. 59. Iss. 14, p. 2919-2940. DOI: 10.1016/0016-7037(95)00185-9
  34. Yudovich Ya.E., Ketris M.P. Principles of lithogeochemistry. Saint-Petersburg: Nauka, 2000, p. 479 (in Russian).
  35. Neelov A.N. Petrochemical classification of metamorphosed sedimentary and volcanic rocks. Leningrad: Nauka, 1980, p. 100 (in Russian).
  36. Warr L.N. IMA–CNMNC approved mineral symbols. Mineralogical Magazine. 2021. Vol. 85. Iss. 3, p. 291-320. DOI: 10.1180/mgm.2021.43
  37. Bibikova E., Skiöld T., Bogdanova S. et al. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Research. 2001. Vol. 105. Iss. 2-4, p. 315-330. DOI: 10.1016/S0301-9268(00)00117-0
  38. Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J. The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. European Lithosphere Dynamics. Geological Society of London, 2006. Vol. 32, p. 579-598. DOI: 10.1144/GSL.MEM.2006.032.01.35
  39. Kozlovskii V.M., Travin V.V., Savatenkov V.M. et al. Thermobarometry of Paleoproterozoic Metamorphic Events in the Central Belomorian Mobile Belt, Northern Karelia, Russia. Petrology. 2020. Vol. 28. N 2, p. 183-206. DOI: 10.1134/S0869591120010038
  40. Dokukina K.A., Konilov A.N., Bayanova T.B. et al. Metamorphosed Plagiogranite Veins In Salma Eclogites, Belomorian Eclogite Province. Precambrian Research. 2024. Vol. 400. N 107248. DOI: 10.1016/j.precamres.2023.107248
  41. Bibikova E.V., Bogdanova S.V., Glebovitsky V.A. et al. Evolution of the Belomorian Belt: NORDSIM U-Pb Zircon Dating of the Chupa Paragneisses, Magmatism, and Metamorphic Stages. Petrology. 2004. Vol. 12. N 3, p. 195-210.
  42. Balaganskii V.V. Main stages of tectonic development of the Northeastern Baltic Shield in the Paleoproterozoic: Avtoref. dis. … d-ra geol.-mineral. nauk. Saint Petersburg: Institut geologii i geokhronologii dokembriya RAN, 2002, p. 32 (in Russian).
  43. Krylov D.P., Klimova E.V. Origin of carbonate-silicate rocks of the Porya Guba (the Lapland-Kolvitsa Granulite Belt) revealed by stable isotope analysis (δ18O, δ13C). Journal of Mining Institute. 2024. Vol. 265, p. 3-15.
  44. Salimgaraeva L.I., Skublov S.G., Berezin A.V., Galankina O.L. Fahlbands of the Keret archipelago, White Sea: the composition of rocks and minerals, ore mineralization. Journal of Mining Institute. 2020. Vol. 245, p. 513-521. DOI: 10.31897/PMI.2020.5.2
  45. Vrevsky A.B., Kuznetsov A.B., Lvov P.A. Age and Stratigraphic Position of a Supracrustal Complex (Kaskama Block, Inari Terrane, Northeastern Kola–Norwegian Region of the Fennoscandian Shield). Doklady Earth Sciences. 2023. Vol. 511. Part 2, p. 645-651. DOI: 10.1134/S1028334X23600950
  46. Nitkina E.A., Belyaev O.A., Dolivo-Dobrovolskii D.V. et al. Metamorphism of the Korvatundra Structure of the Lapland – Kola Orogen (Arctic Zone of the Fennoscandian Shield). Russian Geology and Geophysics. 2022. Vol. 63. N 4, p. 503-518. DOI: 10.2113/RGG20214404
  47. Kolodiazhnyi S.Yu. Paleoproterozoic structural-kinematic evolution of the South-East Baltic Shield. Moscow: GEOS, 2006, p. 332 (in Russian).

Similar articles

Prospects for rare earth element mineralization in the weathering crusts developed on granite-gneisses of the Souktal Plutonic Complex (Northern Kazakhstan)
2025 Medet A. Junussov, Kamal R. Regmi, Ekaterina V. Klimova, Aleksandr V. Reznik
Lithological-geochemical specifics and genesis of terrigenous-carbonate rocks of the Lower Evenki Member (Middle Cambrian, West of the Siberian Platform)
2025 Sofya I. Merenkova, Evgeniya V. Karpova, Aleksei Yu. Puzik, Vladimir A. Litvinskii, Yuliya V. Shuvalova, M. A. Volkova, Aleksei A. Medvedkov
Physical properties of Paleozoic-Mesozoic deposits from wells in the South Barents Basin
2025 Vadim L. Ilchenko
Reagent treatment of fluorin-containing wastewater from the processing industry
2025 Yuliya D. Peresunko, Anastasiya A. Pisareva, Sergei V. Azopkov, Evgenii N. Kuzin, Nataliya E. Kruchinina
Substantiation of the optimal performance parameters for a quarry during the stage-wise development of steeply dipping ore deposits
2022 Sergey I. Fomin, Maxim P. Ovsyannikov
On the possibility of utilization of carbonate-containing mining waste by producing photocatalytic composite materials
2025 Valeria V. Strokova, Ekaterina N. Gubareva, Yulia N. Ogurtsova, Sofya V. Nerovnaya