High-alumina gneisses of the Chupa Formation in the Belomorian Mobile Belt: metamorphic conditions, partial melting, and the age of migmatites
Abstract
Migmatized gneisses of the Chupa paragneiss Formation in the Belomorian Mobile Belt (BMB) of the Fennoscandian Shield have been studied, and the conditions of partial melting during high-grade metamorphism of the rocks were determined. The melting temperatures and pressures, the amount and composition of the melt formed during the anatexis of gneisses in a closed system, were assessed through direct thermodynamic computer modeling of mineral formation and the construction of pseudosections in pressure-temperature coordinates. The mineral formation calculations are based on the principle of Gibbs energy minimization and were performed using the PERPLE_X software package. The bulk compositions of the migmatized rocks from the Chupa Formation, previously classified and grouped based on their major components, were used for the calculations. It is shown that water-saturated partial melting of compositionally diverse gneisses produces granitic or granodiorite-tonalitic melts within a temperature range of 680-730 °C at moderate to moderately high pressures. The study reveals that the key factor controlling the appearance of kyanite in the investigated rocks is a high Al2O3/CaO ratio (at least 5:1) in the protolith, combined with a total alkali content (Na2O + K2O) exceeding CaO. According the Chemical Index of Alteration (CIA), the protoliths of the gneisses contained detrital material of varying sedimentary maturity. The source rocks were likely weakly to moderately weathered. U-Pb ID-TIMS dating of monazite from two samples of garnet-kyanite-biotite migmatite (whole-rock analysis) indicates Paleoproterozoic migmatization of the Chupa gneisses at 1854 ± 5 Ma. This phase of Paleoproterozoic endogenic activity is widely recorded in the BMB and may be associated with the formation of the Lapland-Kola or Svecofennian orogens, located to the northeast and southwest of the belt, respectively.
Funding
The research was carried out at the expense of a grant from the Russian Science Foundation N 25-27-00117.
References
- Mingguo Zhai, Xiyan Zhu, Yanyan Zhou et al. Continental crustal evolution and synchronous metallogeny through time in the North China Craton. Journal of Asian Earth Sciences. 2020. Vol. 194. N 104169. DOI: 10.1016/j.jseaes.2019.104169
- Emo R.B., Kamber B.S. Evidence for highly refractory, heat producing element-depleted lower continental crust: Some implications for the formation and evolution of the continents. Chemical Geology. 2021. Vol. 580. N 120389. DOI: 10.1016/j.chemgeo.2021.120389
- Touret J.L.R., Santosh M., Huizenga J.M. Composition and evolution of the continental crust: Retrospect and prospect. Geoscience Frontiers. 2022. Vol. 13. Iss. 5. N 101428. DOI: 10.1016/j.gsf.2022.101428
- Marimon R.S., Hawkesworth C.J., Dantas E.L. et al. The generation and evolution of the Archean continental crust: The granitoid story in southeastern Brazil. Geoscience Frontiers. 2022. Vol. 13. Iss. 4. N 101402. DOI: 10.1016/j.gsf.2022.101402
- Sakyi P.A., Kwayisi D., Nunoo S. et al. Crustal evolution of alternating Paleoproterozoic belts and basins in the Birimian terrane in southeastern West African Craton. Journal of African Earth Sciences. 2024. Vol. 220. N 105449. DOI: 10.1016/j.jafrearsci.2024.105449
- Wen-Bin Xue, Shao-Cong Lai, Yu Zhu et al. Generation of Neoproterozoic granites of the Huangling batholith in the northern Yangtze Block, South China: Implications for the evolution of the Precambrian continental crust. Journal of Asian Earth Sciences. 2025. Vol. 277. N 106395. DOI: 10.1016/j.jseaes.2024.106395
- Alekseev V.I. Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia. Journal of Mining Institute. 2020. Vol. 243, p. 259-265. DOI: 10.31897/PMI.2020.3.259
- Marin Yu.B., Smolensky V.V., Beskin S.M. Classification of Rare-Metal Alkali Granites. Geology of Ore Deposits. 2024. Vol. 66. N 7, p. 905-913. DOI: 10.1134/S1075701524700132
- Lehmann B. Formation of tin ore deposits: A reassessment. Lithos. 2021. Vol. 402-403. N 105756. DOI: 10.1016/j.lithos.2020.105756
- Yong-Fei Zheng, Peng Gao. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos. 2021. Vol. 402-403. N 106232. DOI: 10.1016/j.lithos.2021.106232
- Qiong-Xia Xia, Meng Yu, Er-Lin Zhu et al. Two generations of crustal anatexis in association with two-stage exhumation of ultrahigh-pressure metamorphic rocks in the Dabie orogen. Lithos. 2023. Vol. 446-447. N 107146. DOI: 10.1016/j.lithos.2023.107146
- Shaoji Yang, Yanru Song, Haijin Xu et al. Paleoproterozoic ultrahigh-temperature metamorphism and anatexis of the pelitic granulites in the Kongling terrane, South China. Precambrian Research. 2024. Vol. 414. N 107591. DOI: 10.1016/j.precamres.2024.107591
- Guangyu Huang, Jinghui Guo, Richard Palin. Phase equilibria modeling of anatexis during ultra-high temperature metamorphism of the crust. Lithos. 2021. Vol. 398-399. N 106326. DOI: 10.1016/j.lithos.2021.106326
- Haobo Wang, Shuyun Cao, Junyu Li et al. High-pressure granulite-facies metamorphism and anatexis of deep continental crust: New insights from the Cenozoic Ailao Shan–Red River shear zone, Southeast Asia. Gondwana Research. 2022. Vol. 103, p. 314-334. DOI: 10.1016/j.gr.2021.10.010
- Guangyu Huang, Hao Liu, Jinghui Guo et al. Partial melting mechanisms of peraluminous felsic magmatism in a collisional orogen: An example from the Khondalite belt, North China craton. Journal of Metamorphic Geology. 2024. Vol. 42. Iss. 6, p. 817-841. DOI: 10.1111/jmg.12774
- Early Precambrian of the Baltic shield. Ed. by V.A.Glebovitskii. Saint-Petersburg: Nauka, 2005, p. 711 (in Russian).
- Glebovitskii V.A., Sedova I.S., Larionov A.N., Berezhnaya N.G. Isotopic Timing of the Magmatic and Metamorphic Events at the Turn of the Archean and Proterozoic within the Belomorian Belt, Fenno-Scandinavian Shield. Doklady Earth Sciences. 2017. Vol. 476. Part 2, p. 1143-1146. DOI: 10.1134/S1028334X1710004X
- Volodichev O.I. Belomorian Complex of Karelia. Geology and Petrology. Leningrad: Nauka, 1990, р. 245 (in Russian).
- Slabunov A.I., Azimov P.Ya., Glebovitskii V.A. et al. Archaean and Palaeoproterozoic Migmatizations in the Belomorian Province, Fennoscandian Shield: Petrology, Geochronology, and Geodynamic Settings. Doklady Earth Sciences. 2016. Vol. 467. Part 1, p. 259-263. DOI: 10.1134/S1028334X16030077
- Myskova T.A., Glebovitskii V.A., Miller Yu.V. et al. Supracrustal Sequences of the Belomorian Mobile Belt: Protoliths, Age, and Origin. Stratigraphy and Geological Correlation. 2003. Vol. 11. N 6, p. 535-549.
- State Geological Map of the Russian Federation, Scale 1:200000. Izdanie 2-e. Seriya Karelskaya. List Q-36-XV, XVI (Loukhi). Obyasnitelnaya zapiska. Moscow: Moskovskii filial “VSEGEI”, 2021, p. 109 (in Russian).
- Ruchev A.M. On the protolith of the North Karelian gneisses of the Chupa Formation, Belomorian Complex. Geologiya i poleznye iskopaemye Karelii. Petrozavodsk: Karelskii nauchnyi tsentr RAN, 2000. Iss. 2, p. 12-25 (in Russian).
- Bibikova E.V., Borisova E.Yu., Drugova G.M., Makarov V.A. Metamorphic History and Age of Aluminous Gneisses of the Belomorian Mobile Belt on the Baltic Shield. Geokhimiya. 1997. N 9, p. 883-893 (in Russian).
- Drugova G.M. Peculiarities of the early Precambrian metamorphism in Eastern and Western parts of the Belomorsky folded belt (Baltic shield). Zapiski Vserossiiskogo mineralogicheskogo оbshchestva. 1996. Vol. 125. N 2, p. 24-38 (in Russian).
- Skublov S.G., Azimov P.Ya., Li X.-H. et al. Polymetamorphism of the Chupa шддшеу of the Belomorian Mobile Belt (Fennoscandia): Evidence from the Isotope-Geochemical (U-Pb, REE, O) Study of Zircon. Geochemistry International. 2017. Vol. 55. N 1, p. 47-59. DOI: 10.1134/S0016702917010098
- Steiger R.H., Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters. 1977. Vol. 36. Iss. 3, p. 359-362. DOI: 10.1016/0012-821X(77)90060-7
- Connolly J.A.D. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science. 1990. Vol. 290. Iss. 6, p. 666-718. DOI: 10.2475/ajs.290.6.666
- Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology. 2011. Vol. 29. Iss. 3, p. 333-383. DOI: 10.1111/j.1525-1314.2010.00923.x
- White R.W., Powell R., Holland T.J.B. et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology. 2014. Vol. 32. Iss. 3, p. 261-286. DOI: 10.1111/jmg.12071
- Pettijohn F.J., Potter P.E., Siever R. Sand and Sandstone. Springer-Verlag, 1972, p. 634.
- Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 1982. Vol. 299. Iss. 5885, p. 715-717. DOI: 10.1038/299715a0
- Yurchenko A.V., Baltybaev S.K., Volkova Yu.R., Malchushkin E.S. The Mineralogical Composition, Metamorphic Parameters, and Protoliths of Granulites from the Larba Block of the Dzhugdzhur–Stanovoy Fold Area. Russian Journal of Pacific Geology. 2024. Vol. 18. N 2, p. 130-149. DOI: 10.1134/S181971402402009X
- Cox R., Lowe D.R., Cullers R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta. 1995. Vol. 59. Iss. 14, p. 2919-2940. DOI: 10.1016/0016-7037(95)00185-9
- Yudovich Ya.E., Ketris M.P. Principles of lithogeochemistry. Saint-Petersburg: Nauka, 2000, p. 479 (in Russian).
- Neelov A.N. Petrochemical classification of metamorphosed sedimentary and volcanic rocks. Leningrad: Nauka, 1980, p. 100 (in Russian).
- Warr L.N. IMA–CNMNC approved mineral symbols. Mineralogical Magazine. 2021. Vol. 85. Iss. 3, p. 291-320. DOI: 10.1180/mgm.2021.43
- Bibikova E., Skiöld T., Bogdanova S. et al. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Research. 2001. Vol. 105. Iss. 2-4, p. 315-330. DOI: 10.1016/S0301-9268(00)00117-0
- Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J. The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. European Lithosphere Dynamics. Geological Society of London, 2006. Vol. 32, p. 579-598. DOI: 10.1144/GSL.MEM.2006.032.01.35
- Kozlovskii V.M., Travin V.V., Savatenkov V.M. et al. Thermobarometry of Paleoproterozoic Metamorphic Events in the Central Belomorian Mobile Belt, Northern Karelia, Russia. Petrology. 2020. Vol. 28. N 2, p. 183-206. DOI: 10.1134/S0869591120010038
- Dokukina K.A., Konilov A.N., Bayanova T.B. et al. Metamorphosed Plagiogranite Veins In Salma Eclogites, Belomorian Eclogite Province. Precambrian Research. 2024. Vol. 400. N 107248. DOI: 10.1016/j.precamres.2023.107248
- Bibikova E.V., Bogdanova S.V., Glebovitsky V.A. et al. Evolution of the Belomorian Belt: NORDSIM U-Pb Zircon Dating of the Chupa Paragneisses, Magmatism, and Metamorphic Stages. Petrology. 2004. Vol. 12. N 3, p. 195-210.
- Balaganskii V.V. Main stages of tectonic development of the Northeastern Baltic Shield in the Paleoproterozoic: Avtoref. dis. … d-ra geol.-mineral. nauk. Saint Petersburg: Institut geologii i geokhronologii dokembriya RAN, 2002, p. 32 (in Russian).
- Krylov D.P., Klimova E.V. Origin of carbonate-silicate rocks of the Porya Guba (the Lapland-Kolvitsa Granulite Belt) revealed by stable isotope analysis (δ18O, δ13C). Journal of Mining Institute. 2024. Vol. 265, p. 3-15.
- Salimgaraeva L.I., Skublov S.G., Berezin A.V., Galankina O.L. Fahlbands of the Keret archipelago, White Sea: the composition of rocks and minerals, ore mineralization. Journal of Mining Institute. 2020. Vol. 245, p. 513-521. DOI: 10.31897/PMI.2020.5.2
- Vrevsky A.B., Kuznetsov A.B., Lvov P.A. Age and Stratigraphic Position of a Supracrustal Complex (Kaskama Block, Inari Terrane, Northeastern Kola–Norwegian Region of the Fennoscandian Shield). Doklady Earth Sciences. 2023. Vol. 511. Part 2, p. 645-651. DOI: 10.1134/S1028334X23600950
- Nitkina E.A., Belyaev O.A., Dolivo-Dobrovolskii D.V. et al. Metamorphism of the Korvatundra Structure of the Lapland – Kola Orogen (Arctic Zone of the Fennoscandian Shield). Russian Geology and Geophysics. 2022. Vol. 63. N 4, p. 503-518. DOI: 10.2113/RGG20214404
- Kolodiazhnyi S.Yu. Paleoproterozoic structural-kinematic evolution of the South-East Baltic Shield. Moscow: GEOS, 2006, p. 332 (in Russian).