-
Date submitted2024-04-10
-
Date accepted2024-06-03
-
Date published2025-04-25
Combined method for processing spent acid etching solution obtained during manufacturing of titanium products
Possessing high strength, low density and significant chemical resistance, titanium has found wide application in various fields of the national economy – the chemical industry, aviation and rocket technology, mechanical engineering, medicine, etc. The production of titanium products is hampered by a fairly strong oxide film covering its surface. Removal of the oxide film from the surface of titanium workpieces is carried out by etching in solutions of mineral acids of various compositions. A spent acid etching solution (SAES) is formed, containing titanium salt and the remainder of unreacted acids. Almost all etching solutions contain HF and one of the strong acids. This is H2SO4, HCl or HNO3. Thus, the SAES includes ions of titanium, fluorine or chlorine, orsulfate, or nitrate. SAES is quite toxic and must be diluted or cleaned several times before being discharged into a reservoir. Most of the methods used to extract impurities contained in SAES lead to a decrease in their content. As a result of such purification, there is a loss of substances contained in SAES in significant quantities and of interest for further use. The work presents experimental results obtained from the combined processing of SAES containing titanium fluoride, hydrofluoric and hydrochloric acids. At the first stage, SAES is treated with sodium hydroxide. The resulting titanium hydroxide precipitate is filtered off. At the second stage, the filtrate containing sodium fluoride and chloride is processed in a membrane electrolyzer. In this case, not only the extraction of sodium salts from the filtrate occurs, but also the production of sodium hydroxide and a mixture of hydrofluoric and hydrochloric acids. Sodium hydroxide can be used for processing SAES, and a mixture of acids for etching titanium workpieces.
-
Date submitted2024-03-30
-
Date accepted2024-06-03
-
Date published2024-07-04
Preparation and use of complex titanium-containing coagulant from quartz-leucoxene concentrate
- Authors:
- Evgenii N. Kuzin
The search for the new high-efficiency reagents for wastewater treatment is a challenging and urgent task. Titanium-containing coagulants represent a new trend in water treatment and have a much higher efficiency that the traditional aluminium and iron-containing coagulants. The high cost of reagents significantly hinders their implementation. Complex titanium-containing reagents are coagulants prepared by modifying the traditional coagulants by adding 2.5-10.0 wt.% titanium compounds. In this work, titanium tetrachloride prepared from quartz-leucoxene concentrate was prehydrolyzed with subsequent double decomposition with sulfuric acid. The resulting mixture of hydrochloric and sulfuric acids was neutralized with aluminium hydroxide/oxide to form a self-hardening mixture (chemical dehydration). The sample of a complex sulfate-chloride titanium-containing coagulant was a mixture of AlCl3·6H2O – 5-20 wt.%, Al2(SO4)3·18H2O – 70-90 wt.% and TiOSO4 – 2.5-10.0 wt.%. It was proved that by changing the ratio of aluminium oxide/hydroxide and titanium tetrachloride at the stage of prehydrolysis and double decomposition, it is possible to obtain samples of a complex coagulant with different contents of the modifying additive of titanium compounds. An assessment of the coagulation properties of the complex reagent demonstrated its higher efficiency in cold water compared to aluminium sulfate. Studies on the use of the complex titanium-containing coagulant in the process of wastewater treatment from phosphate anions and suspended matter demonstrated its higher efficiency as compared to that of traditional reagents. The advantages of the prepared reagent are a reduction in the effective dose of the reagent, minimization of residual concentrations of pollutants in purified water, intensification of the processes of sedimentation and filtration of coagulation sludge. Purified water can be reused in the recycling water supply system. The use of quartz-leucoxene concentrate and titanium tetrachloride obtained from it as the source material would not only minimize the cost of the resulting complex coagulant, but also take a step towards the implementation of the Zero Waste concept.
-
Date submitted2022-10-30
-
Date accepted2023-09-20
-
Date published2024-02-29
Combined method of phytoremediation and electrical treatment for cleaning contaminated areas of the oil complex
The scale of land pollution with oil waste necessitates the use of economical and effective methods of recultivation. Phytoremediation is one of the simplest methods, but it has a number of limitations, so additional preparation of the territory is often required before it is carried out. Preliminary electrical preparation and subsequent seeding of special phytoremediants are of interest. Passing a constant electric current through the soil volume under a low voltage removes toxicants from deep soil layers even with flooding. In addition, it reduces pollutant content in the upper layer, where the plants root system is located, which creates more favorable conditions for phytoremediants. Adequately selected types of plants will ensure additional soil cleaning, improve its structure and air exchange. The results of two research directions are presented. Experiments on the study of plant resistance to oil-contaminated soil substrate allowed establishing contamination thresholds at which it is advisable to sow a particular species, and to choose optimal phytoremediants. The study of the oil-containing soil cleaning in a monocathodocentric electrochemical installation with the fixation of main characteristics (oil products concentration, soil temperature, volt-ampere characteristics) allows us to develop technical measures to prepare territories for phytoremediation taking into account the relief features.
-
Date submitted2022-07-10
-
Date accepted2023-06-20
-
Date published2024-02-29
Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline
A mathematical model of the in-line control of the insulation resistance state for cathodically polarized main pipelines according to electrometry data is considered. The relevance of the work is caused by the opportunity to create in-line internal isolation defects indicators of the main pipelines for transported liquids that are good conductors and expand the functionality of monitoring and controlling cathodic protection systems of the main pipelines. Features of the mathematical model are: consideration of the electric conductivity of transported liquid influence on electric field distribution; consideration of the influence of external and internal insulating coating resistance; use of the electric field of an in-line diagnostic probe for quality control of internal insulation. Practical significance consists in the development of modeling methods for control subsystems of main pipeline protection against corrosion and the development of special mathematical and algorithmic support systems for monitoring and controlling the operating modes of the cathodic protection station of main pipelines.
-
Date submitted2021-04-11
-
Date accepted2021-10-18
-
Date published2021-12-16
Comprehensive assessment and analysis of the oil and gas potential of Meso-Cenozoic sediments in the North Caucasus
- Authors:
- Igor I. Bosikov
- Andrey V. Мaier
At the present stage, the development of the oil and gas industry in the Russian Federation is impossible without replenishing the raw material base, so the urgent task is to conduct investigations, prospecting and evaluation of oil and gas bearing capacity prospects in undiscovered areas. The purpose of the investigations is to analyze facies and thicknesses, choose the methodology of prospecting and exploration in reservoirs, make a comprehensive assessment of oil and gas bearing capacity prospects based on experimental investigations and construct a map of oil and gas bearing capacity prospects of the studied sediment structure. The methodology of the conducted investigations was to identify and trace zones of increased fracturing by qualitative interpretation of time seismic sections. Methods for qualitative interpretation of time seismic sections, the model of physical, chemical and geochemical criteria developed by I.A.Burlakov, gas and geochemical surveying and correlation analysis were used in the investigations. A number of prospecting criteria, established based on the analysis of reference seismic materials on well-studied areas in comparison with the results of well tests, were also used. Structural plan for forecast prospects of oil and gas bearing capacity in the studied area was made; zonal and local objects with prospects for oil and gas were identified. Graphical plotting of Eh and pH concentrations distribution and various gas and geochemical indicators allowed identifying zones of possible oil and gas accumulations and starting their detailed survey. Processing of gas and geochemical materials by means of software allowed efficient assessment of prospects for oil and gas bearing capacity of the investigated objects.
-
Date submitted2019-04-04
-
Date accepted2019-08-04
-
Date published2020-04-24
Chemical heterogeneity as a factor of improving the strength of steels manufactured by selective laser melting technology
The aim of this paper was to establish the causes of the heterogeneity of the chemical composition of the metal obtained by the LC technology. The powdered raw material was made from a monolithic alloy, which was fused by the SLM, the initial raw material was a laboratory melting metal of a low-carbon chromium-manganese-nickel composition based on iron. To determine the distribution pattern of alloying chemical elements in the resulting powder, electron-microscopic images of thin sections were combined with X-ray analysis data on the cross-sections of the powder particles. As a result, it was found that transition (Mn, Ni) and heavy (Mo) metals are uniformly distributed over the powder particle cross-sections, and the mass fraction of silicon (Si) is uneven: in the center of the particles, it is several times larger in some cases. The revealed feature in the distribution of silicon is supposedly due to the formation of various forms of SiO 4 upon the cooling of the formed particles. The internal structure of the manufactured powder is represented by the martensitic structure of stack morphology. After laser fusion, etched thin sections revealed traces of segregation heterogeneity in the form of a grid with cells of ~ 200 μm.
-
Date submitted2015-07-07
-
Date accepted2015-09-16
-
Date published2016-02-24
Activation of heap leaching of low-sulfide ores the invisible gold
- Authors:
- A. G. Sekisov
- Yu. I. Rubtsov
- A. Yu. Lavrov
This article deals with a physical-chemical model of heap leaching processes justifying new technological approaches to recovering dispersed forms of gold from ores, placer sands and deute-rogene mineral raw materials. The key process of this model includes lattice diffusion of high-energy hydrion minerals and hydroxyl-radicals formed as a result of photochemical and electro-chemical processing of initial reagent aqueous solutions. Active components of gas-water emulsions obtained while processing initial reagent solutions provide a structural and material trans-formation of a mineral lattice which concentrates clusters of dispersed gold creating conditions for its interacting with complexing compounds of process solutions. The article also considers the technological processes of activation heap leaching of dispersed gold from the Pogromnoe ore field and the results of the experiments conducted in percolators with their charge ranged from 3 to 100 kg. The results have proved the efficiency of using gas-water suspensions prepared in the pho-toelectrochemical reactor with active ion-radical oxidizing agents.
-
Date submitted2009-07-06
-
Date accepted2009-09-18
-
Date published2010-04-22
Simulation of the stress-strain state forming around the vertical mine in the field of tectonically fractured massif
- Authors:
- D. Yu. Dordzhiev
The influence of the front clean up of stress-strain state around a vertical mine of a tectonically fracture massif for a uranium deposit «Antey» is considered. By means of computer simulation it’s have been confirmed by field observations.