Submit an Article
Become a reviewer
Vol 267
Pages:
413-420
Download volume:

Preparation and use of complex titanium-containing coagulant from quartz-leucoxene concentrate

Authors:
Evgeniy N. Kuzin
About authors
  • Ph.D. Associate Professor Mendeleev University of Chemical Technology of Russia ▪ Orcid
Date submitted:
2024-03-30
Date accepted:
2024-06-03
Date published:
2024-07-04

Abstract

The search for the new high-efficiency reagents for wastewater treatment is a challenging and urgent task. Titanium-containing coagulants represent a new trend in water treatment and have a much higher efficiency that the traditional aluminium and iron-containing coagulants. The high cost of reagents significantly hinders their implementation. Complex titanium-containing reagents are coagulants prepared by modifying the traditional coagulants by adding 2.5-10.0 wt.% titanium compounds. In this work, titanium tetrachloride prepared from quartz-leucoxene concentrate was prehydrolyzed with subsequent double decomposition with sulfuric acid. The resulting mixture of hydrochloric and sulfuric acids was neutralized with aluminium hydroxide/oxide to form a self-hardening mixture (chemical dehydration). The sample of a complex sulfate-chloride titanium-containing coagulant was a mixture of AlCl 3 ·6H 2 O – 5-20 wt.%, Al 2 (SO 4 ) 3 ·18H 2 O – 70-90 wt.% and TiOSO 4 – 2.5-10.0 wt.%. It was proved that by changing the ratio of aluminium oxide/hydroxide and titanium tetrachloride at the stage of prehydrolysis and double decomposition, it is possible to obtain samples of a complex coagulant with different contents of the modifying additive of titanium compounds. An assessment of the coagulation properties of the complex reagent demonstrated its higher efficiency in cold water compared to aluminium sulfate. Studies on the use of the complex titanium-containing coagulant in the process of wastewater treatment from phosphate anions and suspended matter demonstrated its higher efficiency as compared to that of traditional reagents. The advantages of the prepared reagent are a reduction in the effective dose of the reagent, minimization of residual concentrations of pollutants in purified water, intensification of the processes of sedimentation and filtration of coagulation sludge. Purified water can be reused in the recycling water supply system. The use of quartz-leucoxene concentrate and titanium tetrachloride obtained from it as the source material would not only minimize the cost of the resulting complex coagulant, but also take a step towards the implementation of the Zero Waste concept.

Keywords:
complex titanium-containing coagulant quartz-leucoxene concentrate chemical dehydration water purification dephosphatization
Go to volume 267

References

  1. Dayarathne H.N.P., Angove M.J., Aryal R. et al. Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms // Journal of Water Process Engineering. 2021. Vol. 40. № 101820. DOI: 10.1016/j.jwpe.2020.101820
  2. Seung woo Han, Lim seok Kang. Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment // Journal of Korean Society of Environmental Engineers. 2015. Vol. 37. № 6. P. 325-331. DOI: 10.4491/KSEE.2015.37.6.325
  3. Jie Xu, Yanxia Zhao, Baoyu Gao, Qian Zhao. Enhanced algae removal by Ti-based coagulant: comparison with conventional Al- and Fe-based coagulants // Environmental Science and Pollution Research. 2018. Vol. 25. Iss. 13. P. 13147-13158. DOI: 10.1007/s11356-018-1482-8
  4. Yonghai Gan, Jingbiao Li, Li Zhang et al. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives // Chemical Engineering Journal. 2021. Vol. 406. № 126837. DOI: 10.1016/j.cej.2020.126837
  5. Thomas M., Bąk J., Królikowska J. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: short review // Desalination and Water Treatment. 2020. Vol. 208. P. 261-272. DOI: 10.5004/dwt.2020.26689
  6. Kyeong-Jun Jeon, Jong-Ho Kim, Johng-Hwa Ahn. Phosphorus Removal Characteristics of Titanium Salts Compared with Aluminum Salt // Water Environment Research. 2017. Vol. 89. Iss. 8. P. 739-743. DOI: 10.2175/106143017X14839994522902
  7. Kuzin E., Averina Y., Kurbatov A. et al. Titanium-Containing Coagulants in Wastewater Treatment Processes in the Alcohol Industry // Processes. 2022. Vol. 10. Iss. 3. № 440. DOI: 10.3390/pr10030440
  8. Измайлова Н.Л., Лоренцсон А.В., Чернобережский Ю.М. Композиционный коагулянт на основе титанилсульфата и сульфата алюминия // Журнал прикладной химии. 2015. T. 88. № 3. С. 453-457.
  9. Садыхов Г.Б., Заблоцкая Ю.В., Анисонян К.Г. и др. Получение высококачественного титанового сырья из лейкоксеновых концентратов Ярегского месторождения // Металлы. 2018. № 6. С. 3-8.
  10. Котова О.Б., Ожогина Е.Г., Понарядов А.В. Технологическая минералогия: развитие комплексной оценки титановых руд (на примере Пижемского месторождения) // Записки Горного института. 2022. Т. 256. С. 632-641. DOI: 10.31897/PMI.2022.78
  11. Федосеев С.В., Саннерис Джада, Точило М.В. Анализ и классификация ресурсосберегающих технологий воспроизводства минерально-сырьевой базы титановой промышленности // Записки Горного института. 2016. Т. 221. С. 756-760. DOI: 10.18454/PMI.2016.5.756
  12. Копьёв Д.Ю., Анисонян К.Г., Олюнина Т.В., Садыхов Г.Б. Влияние условий восстановительного обжига лейкоксенового концентрата на его вскрываемость при сернокислотном разложении // Цветные металлы. 2018. № 11. С. 56-61. DOI: 10.17580/tsm.2018.11.08
  13. Николаев А.А., Кирпичёв Д.Е., Николаев А.В. Исследование теплофизических параметров анодной области плазменной дуги при восстановительной плавке кварц-лейкоксена в металлографитовом реакторе // Физика и химия обработки материалов. 2019. № 2. С. 14-20. DOI: 10.30791/0015-3214-2019-2-14-20
  14. Смороков А.А., Кантаев А.С., Брянкин Д.В., Миклашевич А.А. Разработка способа низкотемпературного обескрем-нивания лейкоксенового концентрата Ярегского месторождения раствором гидродифторида аммония // Известия вузов. Химия и химическая технология. 2022. Т. 65. Вып. 2. С. 127-133. DOI: 10.6060/ivkkt.20226502.6551
  15. Perovskiy I.А., Burtsev I.N., Ponaryadov A.V., Smorokov A.A. Ammonium fluoride roasting and water leaching of leucoxene concentrates to produce a high grade titanium dioxide resource (of the Yaregskoye deposit, Timan, Russia) // Hydrometallurgy. 2022. Vol. 210. № 105858. DOI: 10.1016/j.hydromet.2022.105858
  16. Истомина Е.И., Истомин П.В., Надуткин А.В., Грасс В.Э. Обескремнивание лейкоксенового концентрата при вакуумной силикотермической обработке // Новые огнеупоры. 2020. № 3. С. 5-9. DOI: 10.17073/1683-4518-2020-3-5-9
  17. Zanaveskin K.L., Meshalkin V.P. Chlorination of Quartz-Leucoxene Concentrate of Yarega Field // Metallurgical and Materials Transactions B. 2020. Vol. 51. Iss. 3. P. 906-915. DOI: 10.1007/s11663-020-01810-2
  18. Rodriguez M.H., Rosales G.D., Pinna E.G. et al. Extraction of Titanium from Low-Grade Ore with Different Leaching Agents in Autoclave // Metals. 2020. Vol. 10. Iss. 4. № 497. DOI: 10.3390/met10040497
  19. Кузин Е.Н., Мокрушин И.Г., Кручинина Н.Е. Оценка возможности использования лейкоксен-кварцевого концентрата в качестве сырья для получения титанатов алюминия и магния // Записки Горного института. 2023. Т. 264. С. 886-894. DOI: 10.31897/PMI.2023.15
  20. Кузин Е.Н. Применение метода атомно-эмиссионной спектроскопии с СВЧ (магнитной) плазмой в процессах идентификации химического состава отходов сталеплавильного производства // Черные металлы. 2022. № 10. С. 79-82. DOI: 10.17580/chm.2022.10.13
  21. Qianjun Le, Shengfei Yu, Wusheng Luo. Particle Formation Mechanism of TiCl4 Hydrolysis to Prepare Nano TiO2 // Applied Sciences. 2023. Vol. 13. Iss. 22. № 12213. DOI: 10.3390/app132212213
  22. Orlach J.-M., Darabiha N., Candel S. et al. Accounting for hydrolysis in the modeling of titanium dioxide nanoparticle synthesis in laminar TiCl4-seeded flames // Combustion and Flame. 2023. Vol. 247. № 112458. DOI: 10.1016/j.combustflame.2022.112458
  23. Пойлов В.З., Казанцев А.Л. Формирование частиц диоксида титана при гидролизе и термогидролизе водно-спиртовых растворов тетрахлорида титана // Известия Томского политехнического университета. Инжиниринг георесурсов. 2018. Т. 329. № 6. С. 58-65.
  24. Averina J.M., Kaliakina G.E., Zhukov D.Y. et al. Development and design of a closed water use cycle / 19th International Multidisciplinary Scientific GeoConference SGEM 2019: Conference proceedings, 30 June – 06 July 2019, Albena, Bulgary. Sophia: STEF92 Technology, 2019. Vol. 19. № 3.1. P. 145-152. DOI: 10.5593/sgem2019/3.1/S12.019
  25. Курбатов А.Ю., Фадеев А.Б., Аверина Ю.М., Ветрова М.А. Оценка возможности использования атмосферных осадков для нужд оборотного водоснабжения машиностроительного предприятия // Цветные металлы. 2021. № 10. С. 55-61. DOI: 10.17580/tsm.2021.10.08
  26. de Mello Santos V.H., Campos T.L.R., Espuny M., de Oliveira O.J. Towards a green industry through cleaner production development // Environmental Science and Pollution Research. 2022. Vol. 29. Iss. 1. P. 349-370. DOI: 10.1007/s11356-021-16615-2
  27. Fet A.M., Deshpande P.C. Closing the Loop: Industrial Ecology, Circular Economy and Material Flow Analysis // Business Transitions: A Path to Sustainability. Cham: Springer, 2023. P. 113-125. DOI: 10.1007/978-3-031-22245-0_11

Similar articles

Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies
2024 Anatolii Yu Opekunov, Dariya V. Korshunova, Marina G. Opekunova, Vsevolod V. Somov, Daniil A. Akulov
Organotin pollutants in emerging coastal-marine sediments of the Kaliningrad shelf, Baltic Sea
2024 Zoya A. Zhakovskaya, Galina I. Kukhareva, Polina V. Bash, Daria V. Ryabchuk, Alexander Yu. Sergeev
Lithification of leachate from municipal solid waste landfills with blast furnace slag
2024 Mariya A. Pashkevich, Yuliya A. Kulikova
Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals)
2024 Lyudmila S. Rybnikova, Petr A. Rybnikov, Vera Yu. Navolokina
The possibility of recultivation of sludge accumulators of small volumes using precipitation of water treatment
2024 Olga M. Guman, Irina A. Antonova
Comprehensive utilization of urban wastewater sludge with production of technogenic soil
2024 Marina V. Bykova, Dmitrii M. Malyukhin, Dmitrii O. Nagornov, Arina A. Duka