-
Date submitted2021-10-08
-
Date accepted2022-01-24
-
Date published2022-04-29
Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry
- Authors:
- Mariya A. Pashkevich
- Marina V. Bykova
The analysis of the main environmental consequences of leaks and local spills of petroleum products at the enterprises of the mineral resource complex is presented. It is established that the problem of soil contamination with petroleum products at the facilities of the mineral resource complex and enterprises of other industries is caused by significant volumes of consumption of the main types of oil products. Based on the results of the author's previous field research, a series of experiments was carried out, consisting in modeling artificial soil pollution with petroleum products such as gasoline, diesel fuel, highly refined oil, motor oil, and transmission oil, followed by their purification by heat treatment at temperatures of 150, 200, and 250 °C. The 250 °C limit of the heating temperature was set due to the need to partially preserve the structure and quality of the soil after heat treatment to preserve its fertility. When the processing temperature rises to 450 °C, all humates are completely burned out and, as a result, productivity is lost. Confirmation is provided by the results of experiments to determine the humus content in uncontaminated soil and soil treated at different temperatures. It was found that at a maximum processing temperature of 250 °C, about 50 % of the initial organic carbon content is preserved. According to the results of the conducted experimental studies, the dependences of the required processing temperature on the concentration of petroleum products to reduce the concentration of petroleum products to an acceptable level have been established. The methodology of thermal desorption cleaning of soils with varying degrees of contamination at enterprises of the mineral resource complex is presented.
-
Date submitted2021-04-26
-
Date accepted2021-07-27
-
Date published2021-10-21
Study of the dynamics for gas accumulation in the annulus of production wells
Accumulation of associated petroleum gas in the annulus is one of the negative factors that impede the intensification of mechanized oil production. An increase in annular gas pressure causes growth of bottomhole pressure, a decrease in back pressure to the formation and the inflow of formation fluid. In addition, accumulation of gas in the annulus leads to displacement and a decrease in the liquid level above the submersible pump. Insufficient level of the pump submersion (rod or electric submersible) causes a number of complications in the operation of mechanized production units associated with overheating of the elements in pumping units. Therefore, the development of technologies for optimizing the gas pressure in the annulus is relevant. Method for calculating the intensity of gas pressure increase in the annulus of production wells operated by submersible pumps has been developed. Analytical dependence for calculating the time interval of gas accumulation in the annulus, during which the dynamic level decreases to the pump intake, is obtained. This value can be used to estimate the frequency of gas withdrawal from the annulus using compressors. It has been found that the rate of increase in annular gas pressure in time increases non-linearly with a rise in the gas-oil ratio and a decrease in water cut, and also linearly increases with a rise in liquid flow rate. Influence of the operating (gas-oil ratio) and technological (value of the gas pressure maintained in the annulus) factors on the flow rate of the suspended reciprocating compressor driven by the beam engine, designed for forced withdrawal and redirection of the annular gas into the flow line of the well is analyzed.
-
Date submitted2020-06-02
-
Date accepted2020-12-15
-
Date published2020-12-29
Method for calculating dynamic loads and energy consumption of a sucker rod installation with an automatic balancing system
The efficiency of sucker rod pump installations, which have become widespread in mechanized lift practice, is largely determined by the balance of the drive. During the operation of sucker rod installations, the balance of loads acting on the rod string and the drive can change significantly due to changes in the dynamic fluid level, which leads to a decrease in balance and an increase in loads on the pumping equipment units. The increase and decrease in the dynamic level in accordance with the pumping and accumulation cycle occurs in wells operating in the periodic pumping mode. It is shown that during the operation of equipment in a periodic mode, fluctuations in the dynamic level and, accordingly, in the loads acting on the nodes occur. This leads to the need for dynamic adjustment of the balancing weights to ensure the balance of the pumping unit. A system for automatic balancing of the rod drive has been developed, including a balancing counterweight, an electric motor that moves the load along the balance beam, a propeller and a computing unit. To study the effectiveness of the proposed device, a complex mathematical model of the joint operation of the reservoir - well - sucker rod pump - rod string – pumping unit has been developed. It is shown that due to the dynamic adjustment of the balance counterweight position, the automatic balancing system makes it possible to significantly reduce the amplitude value of the torque on the crank shaft (in comparison with the traditional rod installation) and provide a more uniform load of the electric motor. Equalization of torque and motor load reduces the power consumption of the unit.
-
Date submitted2017-11-23
-
Date accepted2018-01-19
-
Date published2018-04-24
Theoretical aspects of the technical level estimation of electrical engineering complexes
- Authors:
- S. V. Kolesnichenko
- O. V. Afanaseva
The results of the analysis of methods allowing to evaluate the technical level of the electro technical complex (ETC) are presented and an original technique based on the application of the integral indicator is presented. The characteristic of each stage of the technique is given. The proposed scientific and methodological apparatus for assessing the technical level of the ETС is illustrated by the examples of the executive elements of the ETC comparison (internal combustion engines) using an integral quality index that links both the main characteristics of the samples and the means spent for achieving them. The proposed approach for assessing the technical level and quality of the ETC on the basis of an integral indicator should be carried out already at early stages of the life cycle when solving the following problems: the rationale for the economic feasibility of developing new or improving the quality of the produced ETCs; choice of the best option for the developed ETC; justification of requirements for the ETC; decision-making on the establishment and removal of ETC from production; substantiation of the rules of operation of the ETC in various conditions.
-
Date submitted2015-08-02
-
Date accepted2015-10-04
-
Date published2016-04-22
Development of innovative technologies of dedusting in mining and advance coal mine faces
- Authors:
- G. I. Korshunov
- S. B. Romanchenko
The article describes the results of the implementation of investment projects in the field of complex dedusting implemented in major coal producing companies in Russia. Experimental study of the processes reduce the levels of dust in the workplace in the application of modern systems of irrigation and aspiration systems. The factors that determine the mass and composition of particulate airborne dust at various ways of dust suppression. The results of the analysis of the laser dispersed composition of particles removed from the air of the working area
-
Date submitted2009-08-23
-
Date accepted2009-10-17
-
Date published2010-02-01
Mathematical description of microwave contact level controller for liquid agent
- Authors:
- N. V. Teterin
- O. M. Bolshunova
It is shown the problem of measurement of level in oil tanks. Considered the use of a method of the sway electromagnetic radiation for the control of level of section of environments in tanks, made its mathematical description, resulted the estimation of results of practical application.
-
Date submitted2008-11-01
-
Date accepted2009-01-22
-
Date published2009-12-11
Rate setting of electrical equipment reserve stocks on the enterprises of the gas main transport
- Authors:
- L. V. Vazhenina
Minimization of economic losses from downtime of equipment and, first of all, off-schedule (breakdowns, accidents) is an actual problem whose solution can be achieved by the development and creation of a reserve stocks (irreducible level) materials and spare parts of electrical equipment. As a result of the study and comparative analysis of different methods for determining the amount of the reserve stocks has been concluded that these approaches are not fully reflect the real needs of the enterprise. In this regard, has developed an optimal method for determining the amount of irreducible level of reserve stocks of electrical equipment, taking into account the rational order of delivery of equipment, spare parts.
-
Date submitted1954-08-16
-
Date accepted1954-10-26
-
Date published1956-01-17
Электроуровнемер для замера динамического уровня воды в скважинах
- Authors:
- Unknown
Электроуровнемер предназначен для замера динамического уровня воды в скважинах при откачках (рис. 1). Предельная глубина, измеряемая прибором, 100 м, точность измерения + 0,05%. Принцип действия прибора основан на замыкании электрической цепи между опускаемым в скважину наконечником и водой, определяемом по отклонению стрелки гальванометра (рис. 2). Глубина, на которой происходит замыкание цепи, определяется длиной изолированного провода, опущенного в скважину (см. статью). В заключение отметим, что описанный выше электроуровнемер дает вполне достаточную для практики точность измерения как статического, так и динамического уровней воды в скважинах при одиночных и кустовых откачках.
-
Date submitted1954-08-26
-
Date accepted1954-10-08
-
Date published1956-01-17
Оголовки для центральной и наблюдательной скважин, облегчающие наблюдение за динамическими уровнями
Центральная скважина. При организации опытных откачек, эрлифтом динамические уровни воды в центральной скважине обычно остаются вне наблюдений, так как водоподъемная труба заполняется эмульсией, маскирующей положение динамического уровня. Для наблюдений за динамическими уровнями проходят специальную наблюдательную скважину малого диаметра (пьезометр) в непосредственной близости от центральной скважины, и называют ее затрубной наблюдательной скважиной. При глубоком залегании динамического уровня в водоносном горизонте проходка и крепление затрубной скважины становятся затруднительными. Очень удобно такую скважину заменить пьезометрической трубкой, опущенной в центральную скважину рядом с воздушной трубой. Если нижний обрез пьезометрической трубки погрузить на 5—10 м ниже смесителя, то вода в ней полностью освобождается от воздействия подаваемого в центральную скважину воздуха и устанавливается на уровне, соответствующем динамическому уровню в центральной скважине и водоносном горизонте. Остается только периодически замерять положение этого уровня уровнемером. Удобен уровнемер Б. П. Остроумова.