-
Date submitted2024-07-04
-
Date accepted2024-07-04
-
Date published2024-07-04
Environmental safety and sustainable development: new approaches to wastewater treatment
In 2015, the UN member states adopted the 2030 Agenda for Sustainable Development. Despite significant progress, billions of people – one in three people – do not have access to safe, clean drinking water. Modern wastewater treatment methods include a wide range of biological, chemical and physical processes, each having its own advantages and applications. This thematic volume considers the latest achievements in wastewater treatment technologies, wastewater purification and treatment as well as their potential applications at the local level. The problem of surface water pollution is relevant for all regions of the world. One of the largest sources of pollutants is mining and processing industry. The first stage in the development of wastewater treatment technologies is monitoring of anthropogenically modified water bodies.
-
Date submitted2022-11-04
-
Date accepted2023-03-03
-
Date published2023-04-25
Efficiency of acid sulphate soils reclamation in coal mining areas
During the development of coal deposits, acid mine waters flowing to the surface cause the formation of acid sulphate soils. We study the effectiveness of soil reclamation by agrochemical and geochemical methods at the site of acid mine water discharge in the Kizel Coal Basin, carried out in 2005 using alkaline waste from soda production and activated sludge. A technosol with a stable phytocenosis was detected on the reclaimed site, and soddy-podzolic soil buried under the technogenic soil layer with no vegetation on the non-reclaimed site. The buried soddy-podzolic soil retains a strong acid рН concentration Н 2 О = 3. A high content of organic matter (8-1.5 %) is caused by carbonaceous particles; the presence of sulphide minerals reaches a depth of 40 cm. Technosol has a slightly acid pH reaction H 2 O = 5.5, the content of organic matter due to the use of activated sludge is 19-65 %, the presence of sulphide minerals reaches a depth of 20-40 cm. The total iron content in the upper layers of the technosol did not change (190-200 g/kg), the excess over the background reaches 15 times. There is no contamination with heavy metals and trace elements, single elevated concentrations of Li, Se, B and V are found.
-
Date submitted2022-01-24
-
Date accepted2022-04-26
-
Date published2023-04-25
Forecast of radionuclide migration in groundwater of the zone affected by construction drainage at the Leningrad NPP-2
The distribution of natural (at the level of global background) and technogenic radionuclides in groundwater of the industrial zone in Sosnovy Bor town, where several nuclear power facilities are operating, was analyzed. The main technogenic radionuclides recorded in groundwater samples are cesium ( 137 Cs), strontium ( 90 Sr), and tritium isotopes. The first two aquifers from the surface are subject to contamination: the Quaternary and the upper zone of the Lomonosov aquifer. Based on extensive material on the engineering and geological studies of the work area, a 3D geological model and hydrodynamic and geomigration models of the industrial zone were constructed. By means of modeling, the extent and nature of changes in hydrogeological conditions of area resulting from the construction and operational drainage of the new stage of the Leningrad Nuclear Power Plant (LNPP-2) were determined. The “historical” halo of radioactive contamination of groundwater forming (1970-1990) at the site adjacent to the NPP, where the storage facility of low- and medium-level radioactive waste is located, falls into the zone of influence. Interpretation of monitoring data allowed obtaining the migration parameters for predictive estimates. Modeling has shown that during the time of the LNPP-2 operation there was no intake of contaminated water by the drainage system of the new power plant.
-
Date submitted2021-10-08
-
Date accepted2022-01-24
-
Date published2022-04-29
Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry
- Authors:
- Mariya A. Pashkevich
- Marina V. Bykova
The analysis of the main environmental consequences of leaks and local spills of petroleum products at the enterprises of the mineral resource complex is presented. It is established that the problem of soil contamination with petroleum products at the facilities of the mineral resource complex and enterprises of other industries is caused by significant volumes of consumption of the main types of oil products. Based on the results of the author's previous field research, a series of experiments was carried out, consisting in modeling artificial soil pollution with petroleum products such as gasoline, diesel fuel, highly refined oil, motor oil, and transmission oil, followed by their purification by heat treatment at temperatures of 150, 200, and 250 °C. The 250 °C limit of the heating temperature was set due to the need to partially preserve the structure and quality of the soil after heat treatment to preserve its fertility. When the processing temperature rises to 450 °C, all humates are completely burned out and, as a result, productivity is lost. Confirmation is provided by the results of experiments to determine the humus content in uncontaminated soil and soil treated at different temperatures. It was found that at a maximum processing temperature of 250 °C, about 50 % of the initial organic carbon content is preserved. According to the results of the conducted experimental studies, the dependences of the required processing temperature on the concentration of petroleum products to reduce the concentration of petroleum products to an acceptable level have been established. The methodology of thermal desorption cleaning of soils with varying degrees of contamination at enterprises of the mineral resource complex is presented.
-
Date submitted2021-03-16
-
Date accepted2021-07-27
-
Date published2021-10-21
Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration
Advancement in the production of potassium fertilizers is an important strategic task of Russian agricultural industry. Given annually growing production rates, the reserves of discovered potassium-magnesium salt deposits are noticeably decreasing, which creates the need to ensure stable replenishment of the resource base through both the discovery of new deposits and the exploitation of deep-lying production horizons of the deposits that are already under development. In most cases, deposits of potassium-magnesium salts are developed by underground mining. The main problem for any salt deposit is water. Dry salt workings do not require any additional reinforcement and can easily withstand rock pressure, but with an inflow of water they begin to collapse intensively – hence, special attention is paid to mine waterproofing. Determination of spatial location, physical and mechanical properties of the aquifer and water-blocking stratum in the geological section represent an important stage in the exploration of a salt deposit. The results of these studies allow to validate an optimal system of deposit development that will minimize environmental and economic risks. On the territory of Russia, there is a deposit of potassium-magnesium salts with a unique geological structure – its production horizon lies at a considerable depth and is capped by a regional aquifer, which imposes significant limitations on the development process. To estimate parameters of the studied object, we analyzed the data from CDP seismic reflection survey and a suite of methods of radioactive and acoustic well logging, supplemented with high-frequency induction logging isoparametric sounding (VIKIZ) data. As a result of performed analysis, we identified location of the water-bearing stratum, estimated average thickness of the aquifers and possible water-blocking strata. Based on research results, we proposed methods for increasing operational reliability of the main shaft in the designed mine that will minimize the risks of water breakthrough into the mine shaft.
-
Date submitted2018-07-04
-
Date accepted2018-09-17
-
Date published2018-12-21
Secondary dispersion halos as a prospecting indicator of platinum metal mineralization on the example of the Kamenushinsky massif (Middle Urals)
- Authors:
- A. M. Minibaev
The paper discusses the results of bulk rock geochemical sampling of the Kamenushinsky massif eluvial-deluvial deposits and the massifs bedrocks spectral analysis data. Evaluation of secondary dispersion halos using two-dimensional modeling and multivariate statistic processing of the results have allowed establishing the spatial collocation of platinum and chromium anomalies and high correlation between these elements. These facts confirm the considerable contribution of chromite-platinum mineralization to the primary ores of the entire Kamenushinsky massif. The geological observations and rocks chemical composition analysis has revealed that uranium and barium anomalies are associated with the areas of gabbro and granitoids dike bodies. The insignificant overlapping of uranium and barium anomalies with platinum and chromium ones, as well as the negative correlation between these two groups of elements, is inconsistent with earlier conclusions on the spatial association of platinum mineralization with gabbro and granitoids dikes and a possible connection between these dikes and platinum metal mineralization zones.
-
Date submitted2016-08-30
-
Date accepted2016-10-30
-
Date published2017-02-22
Gas-dynamic processes affecting coal mine radon hazard
- Authors:
- V. I. Efimov
- A. B. Zhabin
- G. V. Stas
The paper focuses on vertical migration of radon in surrounding rocks described by Fick's first law as well as by the continuity equation for diffusion flow, with allowance for sorption and radioactive decay processes. Taking into account special characteristics of vertical radon diffusion, the process can be considered stable. It is demonstrated that for productive areas it is feasible to consider one-dimensional convective diffusion, as diffusive transport of radon by the air of productive areas occurs at steady-state conditions. Normally the factor of radon emissions prevails if atmospheric pressure is constant. Amount of air, calculated using this factor, by 20-30 % exceeds the one needed to dilute carbon dioxide to maximum allowed concentration (MAC).
-
Date submitted2015-08-17
-
Date accepted2015-10-25
-
Date published2016-04-22
Ecological aspects of vehicle tunnels ventilation in the conditions of megalopolises
- Authors:
- S. G. Gendler
The characteristic of Russia and foreign vehicle tunnels are provided in paper and advantages of their placement in the conditions of the city are noted. It is shown that one of the main factors defining negative impact on environment in the period of tunnels driving is mine equipment, and at operation – vehicles. The analysis of essential differences of features of pollution of atmospheric air at construction of tunnels from its pollution at construction of buildings on a surface is given. The examples illustrating levels of negative impact of the upcast ventilation shaft airflow on atmospheric air are given and the ventilation schemes reducing this influence are offered. It is shown that during operation of road tunnels of pollution of the air environment can extend on considerable distances from tunnel portals. Numerical calculations of concentration of carbon oxides and nitrogen during removal of the upcast ventilation shaft airflow through portals and through the mines built near them are executed. Technical solutions on purifications of tunnel air by means of electrostatic filters are described.
-
Date submitted2014-11-05
-
Date accepted2015-01-24
-
Date published2015-10-26
Use of geoinformation technologies for otpimized distribution of stations of atmospheric air quality monitoring
- Authors:
- M. V. Volkodaeva
The article deals with possible applications of modern geographic information systems for optimized distribution of stations of atmospheric air quality monitoring. Due to the fact that estimation of atmospheric pollutant concentrations is a reason for decisions to improve air quality, costly measures to protect the atmosphere and monitoring effectiveness of these actions, atmospheric air quality indicators, and therefore the proper distribution of monitoring stations, are of great importance. Results of model calculations of atmospheric air pollution, which have been recently developed in our country, in combination with GIS solutions, should be used for optimized distribution of stations of atmospheric air quality monitoring. One of the major factors of objective estimation of urban atmospheric air quality is proper reference of industrial and transport pollutant emission sources to the city’s topographic base (both in citywide and local coordinate systems), as well as distribution of stations of atmospheric air quality monitoring and selection of high-priority pollutants for a particular city district. Some recommendations for monitoring stations distribution and pollutants selection based on the GIS analysis of spatial distribution of maximum ground level concentrations of pollutants are given.
-
Date submitted2008-10-30
-
Date accepted2008-12-14
-
Date published2009-12-11
On correlation of element concentrations in spray нaloes of dispersion being fixed with different geoelectrochemical methods
- Authors:
- O. F. Putikov
- E. G. Margovich
The theoretical basis for correlation between the results of two geoelectrochemical methods at different depths of sampling is presented. The field data confirm the conclusion.
-
Date submitted2008-10-21
-
Date accepted2008-12-10
-
Date published2009-12-11
Prediction and prospecting types of reflection of buried kimberlite fields in terrigenous diamond-bearing rocks
- Authors:
- V. N. Ustinov
On the basis of complex of lithologic-stratigraphic, mineralogical, facial-dynamic, paleogeomorphologic and morphogenetic features of post-kimberlitic terrigenous diamond-bearing rocks and reconstructed synchronous relief three prediction and prospecting types of reflection of buried kimberlite fields are distinguished. It is shown that ranging of diamondiferous territories to various types enables to direct exploration works to discovery of diamond deposits of the certain origin and makes possible to select proper prospecting technique. With the use of suggested criteria of research of promising territories the evaluation of diamond presence in the industrial regions of the Siberian, East-European and African-Arabian platforms is carried out.