-
Date submitted2024-04-11
-
Date accepted2024-11-07
-
Date published2025-04-28
Thyristor booster device for voltage fluctuation reduction in power supply systems of ore mining enterprises
The article is devoted to solving the problem of voltage fluctuations in the power supply systems of ore mining enterprises. The connection of high-power consumers with abruptly variable operating mode (for example, high-voltage mining excavators) causes voltage fluctuations and sags, disabling electrical equipment, communication, and automation devices in the 6-10 kV distribution network, which disrupts technological processes, etc. The use of existing solutions and methods to reduce voltage variations caused by dynamic loads is not effective. To solve the problem, booster transformers with high-speed thyristor switches can be used to work out switching the control steps towards increasing or decreasing the voltage. The authors offer a new circuitry solution for a thyristor booster device (TBD) with a pulse-phase control method. The purpose of the research is to determine the control laws of TBD, which enable to effectively reduce voltage fluctuations from dynamic load in the power supply systems of mining enterprises. The article provides a schematic diagram of the TBD and describes the principle of operation of the device. Some modes of increasing and decreasing the output voltage of the TBD, as well as the basic mode (without voltage addition) are provided. Mathematical modeling of TBD control processes was carried out and adjustment characteristics were set taking into account the load power factor. On a simulation computer model of a 6 kV electric network with a dynamic load, the verification of the adjustment characteristics of TBD obtained during mathematical modeling was carried out. Based on the research results, the laws for regulating the output voltage of TBD were established. The TBD effective control range with normal permissible limits of odd harmonics have been determined. The conducted research will make it possible to implement the device control system.
-
Date submitted2024-06-12
-
Date accepted2024-07-18
-
Date published2025-04-28
Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities
- Authors:
- Ivan S. Tokarev
The issue of determining the main parameters of electric energy storage systems – power and energy intensity – is being considered, the determination of which is a fundamentally important task when introducing such devices into the power supply systems of enterprises for both technical (technological) and economic reasons. The work analyzes problems that can be solved by installing electricity storage systems at gas industry facilities. An industry-wide methodology has been developed for calculating the parameters of an electricity storage system based on traditional methods and methods aimed at minimizing the standardized cost of electricity with adaptation to the conditions of the gas industry. A distinctive feature of the presented methodology is the ability to determine the power and energy intensity of electricity storage systems when performing several functions. The methodology was tested at a typical gas industry facility – the Yarynskaya compressor station of OOO Gazprom Transgaz Ukhta, a characteristic feature of which is an autonomous power supply system. An example is given of calculating the electricity storage normalized cost using an improved LCOS indicator, which takes into account the effect of changing the fill factor of the electrical load schedule on the amount of gas consumption by a power plant for its own needs. To confirm the economic efficiency of introducing electricity storage systems calculated using the above methodology, calculations of the integral effect, net present value and efficiency index are presented.
-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts
The efficiency of a mining and processing plant depends on the level of complex mechanization of the production process. In mineral extraction, haulage is a major cost category, with haul trucks being the key component of the mining transportation system. To improve production performance, mining operations can increase their haulage turnover and reduce transportation costs, which necessitates making haul trucks more reliable. This can be done by improving their mean time to first failure (MTFF) indicators. This article analyzes the reliability status of the traction drive system inhaul trucks operating in the mineral resources sector. It provides a quantitative assessment of traction drive system failures resulting from part defects and discusses the associated repair costs. By examining failure data from 2018 to 2022 and the results of vibration tests performed on a diesel generator, the study reveals that the most expensive failures are associated with defects in the synchronous generator, which are primarily caused by elevated external vibrations. Based on basic vibration tests and vibration spectra tests at different operating modes, recommendations have been formulated concerning the generator’s robustness to external mechanical forces and the ways to increase the generator’s protection grade to prevent dust intrusion. The study also identifies the frequency range that poses the greatest risk of damage to the windings.
-
Date submitted2022-09-30
-
Date accepted2022-11-28
-
Date published2022-12-29
Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies
The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.
-
Date submitted2021-06-01
-
Date accepted2021-07-27
-
Date published2021-10-21
Indicator assessment of the reliability of mine ventilation and degassing systems functioning
- Authors:
- Nina O. Kaledina
- Valentina A. Malashkina
The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.
-
Date submitted2021-03-30
-
Date accepted2021-05-26
-
Date published2021-09-20
Improving the efficiency of autonomous electrical complexes of oil and gas enterprises
- Authors:
- Boris N. Abramovich
- Ivan A. Bogdanov
In accordance with the Energy Strategy until 2035, the possibility of increasing the efficiency of energy use of secondary energy resources in the form of associated oil and waste gases has been substantiated by increasing the energy efficiency of the primary energy carrier to 90-95 % by means of cogeneration plants with a binary cycle of electricity generation and trigeneration systems with using the energy of the waste gas to cool the air flow at the inlet of gas turbine plants. The conditions for maintaining the rated power of the main generator with variations in the ambient temperature are shown. An effective topology of electrical complexes in a multi-connected power supply system of oil and gas enterprises according to the reliability condition is presented, which allows increasing the availability factor by 0.6 %, mean time between failures by 33 %, the probability of failure-free operation by 15 % and reducing the mean time of system recovery by 40 %. The article considers the use of parallel active filters to improve the quality of electricity and reduce voltage drops to 0.1 s when used in autonomous electrical complexes of oil and gas enterprises. The possibility of providing uninterrupted power supply when using thyristor systems for automatic reserve input has been proven. A comparative analysis was carried out to assess the effect of parallel active filters and thyristor systems of automatic transfer of reserve on the main indicators of the reliability of power supply systems of oil and gas enterprises.
-
Date submitted2019-07-09
-
Date accepted2019-09-07
-
Date published2020-04-24
Promising model range career excavators operating time assessment in real operating conditions
The development prospects of the mining industry are closely related to the state and development of modern mining machinery and equipment that meet the technical and quality requirements of mining enterprises. Enterprises are focused on a quantitative assessment – the volume of mineral extraction, depending on the functioning efficiency of a promising series of mining machines, which include modern mining excavators. Downtime and unplanned shutdowns of mining excavators directly depend on the operating conditions of the mining machine, which has negative influence on the machine as a whole and its technical condition, which entails a decrease in the efficiency of using expensive mining equipment and economic losses of the mining enterprise. The rationale for external factors that affect the operating time and technical condition of mining excavators is given. For a more detailed assessment of the influence of external influences on the efficiency of operation of mining machines, the influencing factors are divided into two groups: ergatic, directly related to human participation, and factors of a natural-technogenic nature, where human participation is minimized. It was revealed that factors of a natural-technogenic nature have the greatest influence. An algorithm is proposed for a comprehensive assessment of the technical condition and forecasting of operating time both in nominal and in real operating conditions, taking into account factors of a natural and technogenic nature. It is proposed, based on the developed program for planning and evaluating the life of a mining excavator, to adjust the schedules for maintenance and repair (MOT and R) in order to minimize the number of unplanned downtime of a mining excavator and maintain it in good condition.
-
Date submitted2019-07-21
-
Date accepted2019-09-20
-
Date published2020-02-25
Assessment of operational reliability of quarry excavator-dump truck complexes
- Authors:
- V. M. Kurganov
- M. V. Gryaznov
- S. V. Kolobanov
The method proposed in the article is based on the mathematical apparatus for quantitative assessment of the reliability of majority schemes of structural redundancy of transport processes, which provide the availability and usage of several backup delivery channels in the transport process in case of any malfunction. The principle of multi-channel haulage is commonly used in quarries for transportation of overburden and minerals from benches by dump trucks, when excavators and dump trucks performing cyclic operations function as a single excavator-dump truck complex. This pattern of work significantly increases the likelihood of fulfilling the daily plan for transporting rock mass due to the redistribution of dump trucks between mining and overburden excavators in the event of failure of one or more units of mining and handling equipment. The reliability of excavator-dump truck complexes is assessed in three stages: initial data collection for mathematical modeling of excavator-dump truck complex performance; solving the problem of optimizing the distribution of dump trucks between excavators, ensuring maximum productivity of the excavator-dump truck complex; assessment of the reliability of its work depending on the probability of fulfilling the daily plan for the transportation of rock mass. The proposed method is implemented as part of a computer program and makes it possible to automate the operational management of the process of transporting rock mass in a quarry using a mobile application. The developed guidelines can be used for any quarries with automobile transport, regardless of the type of mineral extracted, the mining method, the loading pattern, the capacity of the excavation and loading equipment fleet, and the capacity of operated dump trucks.
-
Date submitted2018-09-08
-
Date accepted2018-11-01
-
Date published2019-02-22
Complexation of telecommunications and electrical systems in mines and under-ground facilities
- Authors:
- V. A. Shpenst
The possible options for the integration of telecommunications and electrical systems of mining enterprises are considered. Based on an analysis of the current state and prospects for the development of telecommunications systems, various technical solutions are proposed for sharing the power supply networks available in mines and underground structures in order to solve the problems of telecommunication, automate process control and ensure the safety of operations. The analysis of the possibilities of applying the PLC technology in underground structures and mines for solving specific telecommunication problems has been carried out, and examples of their possible technical and hardware implementation are given.
-
Date submitted2017-09-14
-
Date accepted2017-11-23
-
Date published2018-02-22
Providing energy decoupling of electric drive and electric grids for industrial electrical installations
Subjects of the research are industrial electric drives, witch maintain the operation of main actuating units of production machines and installations during the development of mineral resource deposits. The goal is to research the possibility to ensure the energy decoupling of industrial electric drives and electric grid by means of structural implementation of active rectifiers into frequency converters. The main purpose of energy decoupling is to eliminate the negative impact of low quality electric energy and changes in energy parameters on electric drive operation. In order to accomplish energy decoupling of electric drive with active rectifier, methods of mathematical and simulation modeling with mathematical application software package were used. The integrated simulation model with two electric drives, including active rectifier (energy decoupled electric drive) and diode rectifier (standard type electric drive), were created. Simulation model is provided with tools for oscillographic testing and analysis of the impact of power quality parameters on frequency converters and drive motors operation. The analysis of effectiveness of energy decoupling by means of active rectifier of frequency converter shows that drive motor completely retains the stability and controllability of rotation frequency and torque during the changes of power quality parameters in electric grid. The use of active rectifier allows to ensure the operation of electric drive in required mode in case of voltage decrease by 30 % with normative value of 5-10 %, i.e. energy decoupling provides high stability margin for voltage. Electric drive with active rectifier ensures energy decoupling in case of asymmetry of supply voltage. The control of mechanical variables of induction motor during offsets in amplitude and frequency in all phases of electric grid is ensured to be on required level.
-
Date submitted2017-09-10
-
Date accepted2017-11-01
-
Date published2018-02-22
Uninterruptible power supply system for mining industry enterprises
- Authors:
- B. N. Abramovich
Immediate problem of compensating falls and deviations of voltage in the power supply systems of mining enterprises in order to ensure the proper level of power supply reliability for the most important technological consumers is substantiated in the article. The main causes of the voltage falls and deviations occurrence in the power supply systems of mining enterprises have been identified. The degree of different nature voltage falls and deviations influence on the dynamic and static stability of power supply systems is established. The necessity of ensuring an uninterrupted and guaranteed power supply mode for continuous technological processes of mining production is shown. The analysis of the existing regulatory documentation in the field of guaranteed and uninterrupted power supply is carried out. Based on the results of experimental studies and mathematical modeling, a relationship has been revealed between formally independent sources of electricity supply from the viewpoint of existing regulatory documentation. The expression allowing determination of cohesion coefficient of two power supply sources is given. The necessity of taking into account the degree of sources interconnection in the synthesis of uninterruptible power supply systems for mining enterprises is justified. The analysis of existing technical means and solutions for reserving power supply for mining enterprises, including modern uninterruptible online power supply systems, own needs power plants, as well as dynamic voltage distortion compensators, is done. The classification of the consumers categories related to possibility of their complete or partial shutdown in emergency modes in case of voltage falls and interruptions is given. System of uninterruptible power supply for mining enterprises based on the combined use of alternative and renewable energy sources, uninterruptible power supply sources and a multi-step automatic reserve transition system, which allows ensuring uninterrupted mode of energy supply for the most responsible consumers of mining enterprises, was developed.
-
Date submitted2015-12-10
-
Date accepted2016-02-18
-
Date published2016-12-23
Engineering and technical measures to improve reliability of power supply to construction facilities
- Authors:
- P. S. Orlov
The paper examines an issue of ensuring reliable power supply to construction facilities, proposes ways to reduce losses in distribution networks and improve power supply reliability. The primary focus is on increasing the transmission capability of power distribution networks and improving power supply reliability and safety of single-phase electricity consumers. Engineering and technical proposal belongs to the field of electrical engineering and in particular concerns power supply to single-phase consumers from three-phase networks, including construction industry consumers, and can be used in three-phase three-, four- and five-wives alternating current power distribution networks.
-
Date submitted2015-08-03
-
Date accepted2015-10-03
-
Date published2016-04-22
The method for synthesis of power supply system topology of mineral resources enterprises on the basis of logical and probabilistic assessments
- Authors:
- B. N. Abramovich
- S. V. Baburin
A method for the synthesis of the power supply system topology of mineral resources enterprises. The expediency of using general logic probabilistic method and developed on the its basis software «ARBITR» to calculate the reliability of power supply systems. The synthesis results of power supply system topology on the example of underground mining and gas transmission systems consumers. Recommendations to improve the power supply reliability of mineral resources enterprises.
-
Date submitted2015-08-24
-
Date accepted2015-10-16
-
Date published2016-04-22
Ways to ensure reliability, safety and efficiency of the costruction and installation works when buildings and structures erecting by stabilizing process of the rocking cargo suspension
- Authors:
- L. A. Goldobina
- P. S. Orlov
Nondestructive optical methods for measuring of the «thick» films thickness of the order of 0,001-1,00 mm are analyzed. It is shown that using the laser beam radiation and modern optical and electronic schemes possible to decrease the time of single measurement to 1ms and less at the measuring frequency of 10-50 hz. The possibility of measuring thickness and spreading coefficient and evaporation kinetics of liquid films is demonstrated. A new computer method of the data processing aimed to determine the film thickness from the angle dependence of the laser beam reflection coefficient by the film is offered. The offered procedure and the experimental technique realizing it permits to decrease the thickness determination uncertainty to the order of ten.
-
Date submitted2009-08-06
-
Date accepted2009-10-29
-
Date published2010-02-01
Trends in using technology to improve pipeline hydrotransport
- Authors:
- N. V. Golovachev
This paper is devoted to reviewing the most promising directions of development of hydrotransport in the current time. The further improvements of proposals hydrotransport are considered hereinafter. An analysis of technology and means to ensure the effective functioning of hydrotransport systems have been carried out. An algorithm of selection new research in the field hydrotransport is proposed.