-
Date submitted2024-09-06
-
Date accepted2025-01-28
-
Date published2025-03-27
Results of aeromagnetic survey using unmanned aerial system at the Bunger Hills and Highjump Archipelago, Wilkes Land, East Antarctica
The paper focuses on the technique and results of an aeromagnetic survey conducted using a fixed-wing unmanned aerial system (UAS) in East Antarctica at the Bunger Hills and Highjump Archipelago (Wilkes Land) during the 69th Russian Antarctic Expedition. The above survey was carried out at a 250-meter distance between flight lines (scale 1:25,000) over the area of 600 km2 to increase the geological knowledge of the area. The magnetic anomaly map obtained after data processing is more detailed than any of known published geological maps of the area. The size of anomalies detected varies from dozens of meters up to large, kilometer-scale structures traced within the entire area under survey. The data analysis shows that the surveyed region is characterized by morphological heterogeneity and amplitude variability of anomalous magnetic field. Along with relatively calm zones one can observe strong gradient ones. Even the fluent analysis of aeromagnetic survey results proves their high information content. The UAS-based survey results demonstrate that the technique implemented is an important tool of applied geophysics and can effectively solve tasks of geological mapping in harsh weather conditions of Antarctica. It can adequately replace conventional aeromagnetic surveys that are now done using manned aircraft.
-
Date submitted2024-04-24
-
Date accepted2024-09-24
-
Date published2024-11-12
Study and justification of the combination of beneficiation processes for obtaining flake graphite from technogenic carbon-containing dusts
The most important task of modern production development is to provide the mineral and raw materials sector of the economy with resources included in the list of strategic raw materials, including flake graphite. In addition to natural raw materials, the source of its obtaining can be metallurgical production wastes not involved in processing. Development of metallurgical dust beneficiation technology will solve the problem of obtaining high-purity flake graphite with a crystal structure close to ideal and in demand in the production of high-tech materials. It will allow creating a renewable raw material base of graphite and utilising metallurgical production wastes. The research included the study of dust beneficiation by coarseness, magnetic and flotation methods, the influence of dust disintegration processes on beneficiation indicators. Based on the established technological properties of the components of dusts, magnetic, flotation and gravity beneficiation methods can be applied for their separation in different sequence. It is shown that dusts from different sites have different enrichability by these methods, and it should be taken into account when developing a complex technology of their processing. The degree of beneficiation increases in a row of dusts from the blast furnace shop (BF) – electric steel smelting shop (ESS) – oxygen-converter shop (OCS). The method of grinding has a significant influence on the separation indicators – at dry grinding in a centrifugal-impact mill with subsequent pneumatic classification the quality of graphite concentrates increases by 22.7 % of carbon for BF dust and by 13.48 % of carbon for ESS dust. OCS dust beneficiation indicators are high at coarse grinding with steel medium – mass fraction of carbon 96.1 %.
-
Date submitted2023-09-08
-
Date accepted2024-06-03
-
Date published2024-12-25
Modern approaches to barium ore benefication
Barite is one of the critically important minerals in several industries, including the fuel and energy, nuclear, and medical sectors. For decades, its extraction did not require any complex techniques; however, with the depletion of rich barite-bearing veins around the world, the circumstances have changed. While the demand for barite is growing widely, it is necessary to optimize and improve the existing methods for benefication of barite and barite-containing ores, and create new approaches to extracting this mineral, as well as develop technogenic barite deposits accumulated in large quantities during the previous ore production. Dumps and tailings often demonstrate high barite content, while new mining technologies make its extraction cost-efficient. Russian and foreign papers of the last 14 years provide data on the current state of primary and technogenic deposits, areas of barite use and the approaches employed for its benefication. Considering the expansion of the range of barite applications, the growing need for the mineral in the oil and gas industry and the difficulties in developing new barite deposits in Russia, the importance of new approaches to the enrichment of ore tailings in polymetallic deposits is revealed.
-
Date submitted2022-04-20
-
Date accepted2022-07-21
-
Date published2022-11-03
Iron ore beneficiation technologies in Russia and ways to improve their efficiency
- Authors:
- Aleksei E. Pelevin
Increasing the efficiency of crushing circuits is associated with a decrease in the particle size of finely crushed ore and the use of dry magnetic separation of crushed ore. Reducing grinding costs is achieved by using drum mills jointly with mills of other designs. The use of automation systems, slurry demagnetization, technologies with staged concentrate separation, and beneficiation and fine screening in a closed grinding cycle lead to a reduction in grinding costs. The main industrial technology for improving the quality of concentrate is its additional beneficiation using regrinding, fine screening, flotation, and magnetic-gravity separators. Increasing the integrated use of iron ore raw materials is associated with an increase in the yield of iron concentrate and the production of hematite concentrate during the beneficiation of hematite-magnetite ores and ilmenite concentrate during the beneficiation of titanomagnetite ores. Incremented concentrate yield is possible by using magnetic separators with an increased magnetic induction up to 0.25-0.5 T in the first stages of beneficiation. To obtain hematite and ilmenite concentrates, combined technologies can be used, including fine screening, high-gradient magnetic, gravity, flotation, and electrical separation.
-
Date submitted2022-05-17
-
Date accepted2022-09-06
-
Date published2022-11-03
Methodological substantiation of the choice for optimal modes of equipment operation during the stage-wise concentrate removal in iron ores beneficiation
- Authors:
- Alexandr S. Opalev
- Svetlana A. Alekseeva
The urgent task of improving the quality of iron ore concentrates was studied. We propose to use the stage-wise removal of the concentrate by combining fine screening, regrinding, and magnetic-gravity separation. Exemplified by magnetite ore from the Stoilensky GOK, a scientific and methodological approach to the search for optimal separation parameters and modes was substantiated. It includes several stages: studying the particle size distribution and release of useful components in the feed product to select classification parameters; a series of experiments on grinding oversize products to diverse sizes; beneficiation of the obtained products by MG separation. To select the optimal parameters of ore preparation, an analysis of the beneficiation efficiency was used, which is calculated according to the Hancock – Luyken criterion. The results of the research are experimental dependences that connect the process parameters of beneficiation with those of fine vibratory screening. For the studied ferruginous quartzite ore processed at the Stoilensky GOK, the obtained dependences can be described by a second-order polynomial with a high accuracy of approximation. The best performance is achieved with a particle size of 0.1 mm: Fe tot content in the concentrate is 69.7 %, recovery is 85 %, classification efficiency is 80.4 %. The top size of the product in this case is 0.076 mm, which corresponds to 70-73 % grinding size of –0.045 class.
-
Date submitted2022-05-17
-
Date accepted2022-09-06
-
Date published2022-11-03
On the need to classify rock mass fed to dry magnetic separation
The hypothesis of a possible use of dry magnetic separation is substantiated on the example of ores from ferruginous quartzite deposits operated by plants of PAO “Severstal” Holding. Size class of ore after medium crushing is –80+0 mm when the vibrating feeder is used for feeding ore mass to the separation zone. The rationale is based on the analysis of video recording of physical simulation on a laboratory drum magnetic separator of SMBS-L series, in the VSDC Video Editor, and simulation modelling of dry magnetic separation on its virtual prototype in Rocky DEM software package. It has been proved that the use of a vibrating feeder for feeding the material to the working area of a magnetic separator makes it possible to: form a monolayer on the surface of the vibrating feeder chute with a thickness close to the maximum size of a lump of separated ore; implement batch feed of material to the separation zone; increase the spacing between lumps in the separation zone when passing through the free fall area, thereby allowing dry magnetic separation of ferruginous quartzites of size class –80+0 mm without pre-preparation.
-
Date submitted2021-01-20
-
Date accepted2021-03-15
-
Date published2021-04-26
Improving the quality of electricity in the power supply systems of the mineral resource complex with hybrid filter-compensating devices
- Authors:
- Yurii A. Sychev
- Roman Yu. Zimin
The urgency and necessity of choosing and justifying the structures of hybrid filter-compensating devices based on series and parallel active filters to improve the quality of electricity in the power supply systems of enterprises of the mineral resource complex is shown. Mathematical models of hybrid filter compensating devices based on parallel and series active filters have been developed. Based on these mathematical models, computer simulation models of the indicated hybrid structures have been developed. The results of simulation showed the effectiveness of the correction of power quality indicators in terms of reducing the level of higher harmonics of current and voltage, as well as voltage deviations. The degree of influence of filter-compensating devices on the power quality indicators, which determine the continuity and stability of the technological process at the enterprises of the mineral resource complex, have been revealed. It has been established that a hybrid filter-compensating device based on a parallel active filter can reduce the level of higher harmonics of current and voltage by more than 90 and 70 %, respectively, and based on a series active filter, it can reduce the level of higher harmonics of voltage by more than 80 %. Based on the simulation results, the possibility of compensating for the reactive power of a hybrid structure based on parallel active and passive filters has been revealed. The possibility of integrating hybrid filter-compensating devices into more complex multifunctional electrical systems for the automated improvement of the quality of electricity is substantiated, as well as the expediency and prospects of their use in combined power supply systems based on the parallel operation of centralized and autonomous sources of distributed generation.
-
Date submitted2020-06-19
-
Date accepted2020-10-06
-
Date published2020-11-24
Practice of using the magnetic treatment devices to intensify the processes of primary oil treating
During the primary treatment of oil, gas and water, complications arise associated with the presence of hard water-oil emulsions, which cause an increase in fluid pressure in the gathering systems, pipeline damage, as well as difficulties in gas separation and preliminary water discharge at the preliminary discharge unit (PRU). Additional problems arise during transportation of highly paraffinic oils associated with the crystallization of paraffin in the flow path of the oilfield equipment and on the inner surface of pipes, leading to a drop in the productivity of pipelines. Article discusses the technology of magnetic-reagent treatment of water-oil media, which allows intensifying the processes of primary oil treatment at the facilities of its production. Bench and pilot tests have shown the ability of the magnetic field to accelerate oil demulsification processes, increasing the percentage of separated water during subsequent settling, and to reduce asphalt-resin-paraffin deposits (ARPD) on the inner surface of oil and gas field equipment. Mechanism of the magnetic field effect on water-oil media is described. Effect of treatment on the integrity of the armour shells of oil-water emulsions was studied. Various modes of magnetic treatment have been investigated with evaluation of its effectiveness. It is shown that the best effect is achieved with the combined use of reagents and a magnetic field. Synergistic effect is observed, which consists in increasing their effectiveness. This made it possible to conclude that this method can be applied to reduce the consumption of reagents used in oil production while maintaining the treatment efficiency.
-
Date submitted2019-07-11
-
Date accepted2019-09-04
-
Date published2019-12-24
Recent scientific research on electrothermal metallurgical processes
- Authors:
- E. Baake
- V. A. Shpenst
A wide range of industrial metallurgical heating and melting processes are carried out using electrothermal technologies. The application of electrothermal processes offers many advantages from technological, ecological and economical point of view. Although the technology level of the electro heating and melting installations and processes used in the industry today is very high, there are still potentials for improvement and optimization due to the increasing complexity of the applications and the strong requirements regarding the performance and quality of the products but also regarding the reduction of time and costs for the development of new processes and technologies. In this paper recent applications and future development trends for efficient heating and melting by electrothermal technologies in metallurgical processes are described along selected examples like induction heating for forging or rolling of billets, heat treatment of strips and plates, press-hardening processes, induction surface hardening of complex geometries, induction welding as well as induction melting processes.
-
Date submitted2017-09-20
-
Date accepted2017-11-09
-
Date published2018-02-22
Development of the system for air gap adjustment and skip protection of electromagnetic lifting unit
- Authors:
- B. A. Zhautikov
- A. A. Aikeeva
The efficiency of the electromagnetic lifting system is ensured by the well-coordinated work of all its parts and elements, namely those providing the strictly vertical movement of the skip. The deviation of the skip movement from the vertical axis can lead to a stop and damage of both the skip and the unit. Therefore, the air gap adjustment and skip protection system of the electromagnetic lifting system, which includes determining the size of the air gap between the electromagnet of the skip and the electromagnet of the aligning device, and the development of a stabilization system to ensure a constant air gap and regulate the current in the electromagnet winding, provide both a strictly vertical movement skip, and its protection. The article is devoted to the theoretical determination of the air gap between the electromagnets of the aligning device and the skip using the Biot – Savar – Laplace law.
-
Date submitted2016-10-30
-
Date accepted2017-01-02
-
Date published2017-04-14
Result of combining data from impulse electrical prospecting and aeromagnetic prospecting for groundwater exploration in the south of Yakutia
In 2014 in the south of Yakutia in the course of groundwater exploration works a complex of geophysical methods was tested: aeromagnetic and electrical prospecting was carried out using near-field transient sounding and electromagnetic sounding with induced polarization. Prospective structures for hydrogeological drilling are zones of discontinuous tectonic faults. In order to identify them, data from aeromagnetic and electrical prospecting were used. Results of drilling confirmed the presence of watered areas; however, analysis of obtained information allowed to come to the conclusion that the amount of water in the faults has no direct connection to electrical conductivity.
-
Date submitted2015-10-14
-
Date accepted2015-12-18
-
Date published2016-08-22
Complex utilization of treatment wastes from thermal power plants
- Authors:
- A. N. Shabarov
- N. V. Nikolaeva
The paper investigates present-day challenges related to accumulation, processing and disposal of the coal combustion wastes. The analysis of technogenic materials beneficiation practices using gravitation, magnetic and flotation beneficiation methods has been carried out. Quantitative and qualitative microscopic analysis of materials has been conducted. The study target were ash and slag wastes (ASW) from thermal power plant and coal combustion ash. Most metals are contained in coals and coal ashes in fine-dispersed (1-10 μm) mineral form. Various native metals and intermetallic compounds, sulfides, carbonates, sulfates, tungstates, silicates, rare earths phosphates and niobates have been discovered. Each metal may occur in several mineral phases, for instance tungsten may be in the form of wolframite, stolzite, ferberite, scheelite and represented by impurities. Not only composition of compounds is diversified, but also morphology of grains: well-defined and skeleton crystals, aggregates and polycrystalline structures, crystal twins and fragments; druses, globules and microspherules; porous shapes, flocculous and splintery clusters, lumpy aggregations, etc. Based on chemical silicate analysis of main ASW components the petrochemical properties of material have been assessed. Preliminary analyses have shown that concentration of ferrum-bearing components in ASW is around 5-11 %. The magnetic method of technogenic waste beneficiation with the help of high-gradient magnetic separation has been studied. The obtained evidences show that fine ASW are most efficiently separated in separators with high-gradient magnetic system. The studies provided justification of a process flow for complex treatment of technogenic carbon-containing material, including flotation, gravitation separation, magnetic heteroflocculation enrichment and high-gradient magnetic separation. The determined complex utilization ratio has proven the efficiency of complex processing.