-
Date submitted2020-05-12
-
Date accepted2020-09-22
-
Date published2020-11-24
Design features of coal mines ventilation using a room-and-pillar development system
- Authors:
- Sergey S. Kobylkin
- Alexander R. Kharisov
The safety of mining operations in coal mines for aerological factors depends on the quality of accepted and implemented ventilation design solutions. The current “Design Manual of coal mine ventilation” do not take into account the features of room-and-pillar development systems used in Russia. This increases the risk of explosions, fires, and gassing. The detailed study of foreign experience in designing ventilation for the considered development systems e of coal deposits allowed to formulate recommendations on the ventilation scheme organization for coal mines using a room-and-pillar development system and the procedure for ventilation during multi-entry gateroad development. Observations have shown that the use of the existing Russian procedure for airing mining sites with a room-and-pillar development system complicates the emergency rescue operations conduct. Low speeds and multidirectional air movement, difficult heat outflow, and the abandonment of coal pillars increase the risk of occurrence and late detection of endogenous fire. The results of numerical modeling have shown that the installation (parallel to the drifts) of ventilation structures in inter-chamber pillars will increase the reliability of ventilation by transferring the ventilation scheme from a complex diagonal to a complex parallel. It will also reduce the amount of air required for the mine site and the total aerodynamic drag. The research made it possible to formulate requirements for the design procedure for coal mines ventilation using a room-and-pillar development system, which consist in the order of working out blocks in the panel, and also the additional use of ventilation structures (light brattice clothes or blowing line brattice).
-
Date submitted2019-12-20
-
Date accepted2020-09-01
-
Date published2020-10-08
Features of the underground storages construction in depleted oil and gas condensate fields
The paper considers the features of the underground storages (US) construction in depleted oil and gas condensate fields (DOGCFs). The requirements for the structure of the formation, corresponding to the parameters of the object for possible US creation are presented. The influence of geological, hydrogeological, mining and technical rock formation conditions on the reliability and tightness of underground storages, including underground gas storages, has been evaluated. The necessary conditions for the US design are analyzed at the example of the Ach-Su oil and gas condensate field, in the presence of a well-explored trap with acceptable parameters for the construction of an underground storage. An important aspect is the geological conditions that meet the criteria for selecting the object: the required structure, the absence of fracturing faults, high reservoir properties of the formation, a sufficient volume of the deposit for the storage. Geological conditions lay the basis for determining the individual characteristics of the US construction technology at each DOGCF. The refined results for the current gas-saturated pore volume and the rate of pressure drop in the formation are presented, which makes it possible to select improved technological indicators in the course of operation of the created US. In order to select the optimal option for the design and construction of the US, the results of economic and geological scenarios analysis were studied concurrently with the capabilities of the technological operation of the object and transport system, which can ensure the maximum daily production of the storage.
-
Date submitted2018-11-03
-
Date accepted2019-01-21
-
Date published2019-04-23
Estimation of critical depth of deposits by rock bump hazard condition
- Authors:
- V. N. Tyupin
During the development of minerals by the underground method, dynamic manifestations of rock pressure occur at a certain depth, which significantly reduces the safety of mining operations. Regulatory documents prescribe at the exploration and design stages to establish the critical depth for classifying a deposit as liable to rock bumps. Currently, there are a number, mainly instrumental, methods for determining the liability of rock mass to rock bumps and methods based on the determination of physical and technical properties and the stress-strain state of rock massifs. The paper proposes a theoretical method for determining the critical depth for classifying a deposit as liable to rock bumps. A formula for determining the critical depth of the rock bump hazard condition is obtained. A mathematical analysis of the influence of the physical and technical parameters of the formula on the critical depth is carried out. Its physical and mathematical validity is substantiated. The numerical calculations of the critical depth for 17 developed fields were carried out using a simplified formula. It also provides a comparison of calculated and actual critical depth values. It is established that the variation of the actual and calculated critical depth is due to the lack of actual data on the value of the friction coefficient and parameters of fracturing of the rock mass in the simplified formula. A simplified calculation formula can be used to estimate the critical depth of a field at the survey and design stages. More accurate results can be obtained if there are actual data on fracture parameters, friction coefficients and stress concentration near the working areas.
-
Date submitted2018-01-15
-
Date accepted2018-03-24
-
Date published2018-06-22
Designing of well trajectory for efficient drilling by rotary controlled systems
- Authors:
- M. V. Dvoinikov
The main directions of increasing the efficiency of drilling wells by improving methods for designing profiles of directional and horizontal wells are identified. The feasibility and necessity of using at drilling with rotary controlled systems the trajectories of directed wells' profiles with continuous curving, that do not contain conjugated sections, on the basis of plane transcendental curves are theoretically substantiated and experimentally confirmed. An algorithm and software are developed that allow optimal selection of a profile or a trajectory section, taking into account minimization of twisting, bending, compressive and tensile stresses that ensure the efficiency of technical and technological parameters of well drilling.
-
Date submitted2016-11-16
-
Date accepted2017-01-01
-
Date published2017-04-14
Complex use of heat-exchange tunnels
- Authors:
- A. F. Galkin
The paper presents separate results of complex research (experimental and theoretical) on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.
-
Date submitted2014-12-10
-
Date accepted2015-02-20
-
Date published2015-12-25
Opencast mine parameters sensitivity analysis at preliminary study of a mining project
- Authors:
- S. I. Fomin
- E. I. Bazarova
The article describes sensitivity analysis, aimed at variables dependence detection: to what extent open cast mine ultimate efficiency or performance will be affected when one of the key input variables is changed. The stronger the dependence effect, the higher the project implementation risk. The sensitivity analysis objective is demonstrated – principle factors identification – critical variables, capable of having a serious influence on the project implementation results, and impact verification of progressive (single) factorial changes. Sensitivity analysis in its content is a single-factor analysis. Output, as a basic performance indicator of an open cast mine, characterizes mine development intensity and is determined by mining-engineering and economic factors. It is proved that the impact degree from various parameters on the open cast mine output is characterized by elasticity ratio. The project indicators sensitivity analysis, which was carried out, allowed to establish the impact degree that various parameters have on the open cast mine output, which takes place in a high-angle ore deposit, characterized by elasticity ratio.
-
Date submitted2014-11-01
-
Date accepted2015-01-18
-
Date published2015-10-26
On the design features of underground multiple gassy coal seam mining
- Authors:
- O. I. Kazanin
The analysis of the industry regulatory requirements and the world design experience of underground multiple coal seam mining is provided. The main problems of intensive longwall mining of multiple flat gassy coal seams as well as methods for determination of high rock pressure zone parameters and seams interaction are considered. The examples of a number of mines in the Kuzbass and Pechora coal basins show that the design of multiple seam mining and the choice of longwall panel parameters were often made without taking into consideration influence of surrounded seams that leads to essential complication of conditions for mining operations and decreases the technical and economic indicators of mining. The existing industry regulations do not allow considering complex influence of factors in multiple coal seams mining fully. On the basis of field, laboratory, and numeric research results it is noted that recommendations for pillar positioning in contiguous seams ensuring efficiency and safety of multiple seam longwall mining can significantly differ in case of liability of coal seams to spontaneous combustion, high natural gas content, influence of multiple seam mining onto daily surface, and difficult conditions of entries maintenance. The importance of having information on the stress-strain condition of the rock mass at a design stage and its changes in the process of multiple seam mining is shown. The need for industry regulations updating for the purpose of a more detailed definition of a form, size and a location of high rock pressure zones as well as stress parameters in these zones is noted. A set of recommendations for effective and safe multiple seam mining is developed.
-
Date submitted2009-07-17
-
Date accepted2009-09-22
-
Date published2010-04-22
MINEFRAME is the modern tool for mining maintenance
- Authors:
- L. S. Lomako
- G. G. Korol
Today an automation of the basic technological processes in production is successfully introduced into various sectors of the national economy, including in mining practice. One of the modern software products intended for automated planning, designing and support of works at the mining enterprises, is integrated package – MINEFRAME which is put in industrial operation.
-
Date submitted2009-07-28
-
Date accepted2009-09-14
-
Date published2010-04-22
The use of computer technologies аt the stages of prospecting, mining and conservation of mineral deposits
- Authors:
- K. V. Morozov
- S. V. Lukichev
The article described the methods for the use of specialized application of software on the stages of exploration, design, planning and maintenance of mining operations and also in abandonment or conservation of mineral resources deposits.
-
Date submitted2009-07-07
-
Date accepted2009-09-04
-
Date published2010-04-22
Application of geodynamic polygons for monitoring of ground deformations while exploitation of gas and oil fields
The main aims and problems of geodynamical monitoring of oil and gas fields are considered. It’s proved that monitoring of deformations of long-term oil and gas fields becomes really actual to secure stable oil and gas production and transporting. Basic criteria of geodynamical polygon creation and general requirements for gas and oil fields monitoring are adduced in this work. For practical creation of geodynamical polygons one indicated equipment, methods and content of work with phases.
-
Date submitted2008-10-08
-
Date accepted2008-12-08
-
Date published2009-12-11
Georadar investigations of shallow depth оf geological section and engineering constructions
- Authors:
- V. V. Glazunov
- N. N. Efimova
The GPR-method showing high resolution, great performance and sensitivity to minor variations in the composition and conditions of soils and material has assumed a role of the leading geophysical method for looking at the upper part of the geological section. This paper presents the advanced directions of GPR application for engineering problems solution.
-
Date submitted1951-07-01
-
Date accepted1951-09-29
-
Date published1952-03-26
Notes on the derivation of formulas for determining the direction error from the eccentricity of the theodolite or signals
- Authors:
- Z. D. Nizguretskii
For assessing the impact of a design error on the accuracy of transmitting directions to a mine, existing mine surveying guidelines usually recommend formula (1) (see article). Using the same reasoning, a well-known formula is usually derived for assessing the accuracy of measuring angles in polygons depending on the impact of signal and instrument eccentricity. The above conclusion does not answer the question: what kind of error should be understood by the value of ex, which in existing guidelines is usually called the "average linear error" [1] or simply "linear error" [2]. Clarification of the meaning of the error ex is absolutely necessary when making practical calculations, since several characteristics of position accuracy are used in error theory, among which the most commonly used are the average linear error of position and the average linear error in direction.