-
Date submitted2021-01-21
-
Date accepted2023-09-20
-
Date published2023-12-25
Adaptation of transient well test results
Transient well tests are a tool for monitoring oil recovery processes. Research technologies implemented in pumping wells provide for a preliminary conversion of measured parameters to bottomhole pressure, which leads to errors in determining the filtration parameters. An adaptive interpretation of the results of well tests performed in pumping wells is proposed. Based on the original method of mathematical processing of a large volume of field data for the geological and geophysical conditions of developed pays in oil field, multidimensional models of well flow rates were constructed including the filtration parameters determined during the interpretation of tests. It is proposed to consider the maximum convergence of the flow rate calculated using a multidimensional model and the value obtained during well testing as a sign of reliability of the filtration parameter. It is proposed to use the analysis of the developed multidimensional models to assess the filtration conditions and determine the individual characteristics of oil flow to wells within the pays. For the Bashkirian-Serpukhovian and the Tournaisian-Famennian carbonate deposits, the influence of bottomhole pressure on the well flow rates has been established, which confirms the well-known assumption about possible deformations of carbonate reservoirs in the bottomhole areas and is a sign of physicality of the developed multidimensional models. The advantage of the proposed approach is a possibility of using it to adapt the results of any research technology and interpretation method.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator
In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Energy efficiency of the linear rack drive for sucker rod pumping units
- Authors:
- Oksana Yu. Ganzulenko
- Ani P. Petkova
At present, in order to increase oil production and reduce economic costs in the development of marginal fields, the development of a cluster method using compact mobile drives of sucker rod pumping units (SRPU) is relevant. The aim of the work is to analyze the ways to improve the energy efficiency of the SRPU by reducing the loss of mechanical and electrical energy, to select the most energy-efficient compact drive for the development of marginal fields in the cluster method, to carry out the kinematic and strength calculations of the drive of the selected size, to develop an adaptive control system for a group of drives in the cluster development of drillings. According to the results of the performed calculations, the linear rack-and-gear drive has the highest efficiency of the drive mechanism. The kinematic and strength calculations of a linear rack-and-gear drive with a stroke length of 1120 mm and a load of up to 8 tons are presented. It was shown that the usage of a direct torque control system and a kinetic energy storage system for the SRPU drive elements and a rod string is an effective means of reducing energy costs in oil production from marginal fields. The use of the developed system for storing and redistributing the potential energy of the rods between the SRPUs that lift oil made it possible to eliminate fluctuations in the power consumption, reduce the power peak value by three times, the peak value of the current consumed from the electric network by two times, and reduce losses in the input converter and cables by three times.
-
Date submitted2022-09-30
-
Date accepted2023-04-03
-
Date published2024-02-29
Optimization of the location of a multilateral well in a thin oil rim, complicated by the presence of an extensive gas cap
- Authors:
- Кirill О. Тomskii
- Mariya S. Ivanova
The specific share of the reserves of hard-to-recover hydrocarbon raw materials is steadily growing. The search for technologies to increase the hydrocarbon recovery factor is one of the most urgent tasks facing the oil and gas industry. One of the methods to expand the coverage of oil reserves and increase oil recovery is to use the technology of drilling multilateral wells with a fishbone trajectory. In the Russian Federation, the most branched well was drilled in the Republic of Sakha (Yakutia) at the Srednebotuobinskoye oil and gas condensate field. The main object of development is the Botuobinsky horizon (Bt reservoir). About 75 % of the geological reserves of the reservoir are concentrated in a thin oil rim with an average oil-saturated layer thickness of 10 m with an extensive gas cap. This circumstance is one of the main complicating factors in the development of the Srednebotuobinskoye oil and gas condensate field. For such complex wells, one of the most important design stages is to determine the optimal location of the fishbone well in an oil-saturated reservoir. The article shows the results of sector modeling in the conditions of the Srednebotuobinskoye field to determine the optimal location of multilateral wells using Tempest simulator.
-
Date submitted2021-05-13
-
Date accepted2022-11-28
-
Date published2022-12-29
Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing
Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.
-
Date submitted2022-05-12
-
Date accepted2022-09-15
-
Date published2022-12-29
Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well
- Authors:
- Vasiliy I. Nikitin
Modern drilling fluids are non-linear viscous media with an initial shear stress. In classical scientific works on hydromechanical modeling of drilling fluids motion in pipes and annular channels the Shvedov – Bingham approximation and Ostwald – de Waale power-law model were used, which did not fully account for behavior of technological fluids in a wide range of shear rates. This article presents a numerical solution for a mathematical model of drilling fluid motion of the three-parameter Herschel – Bulkley rheological model in the annular space of the well. The Herschel – Bulkley model in the rheological equation takes into account the presence of initial shear stress and a tendency for viscosity to change with shear rate, which distinguishes it from the Ostwald – de Waale and Shvedov – Bingham models. The target function in solving the equation of motion is the velocity distribution in the radial direction of the upward flow of the flushing fluid. The analysis of obtained solution is based on the theory of velocity profile influence on quality of cuttings removal during wellbore cleaning. Due to peculiarities of mathematical statement of the task, which supposes necessity of differential equation of motion solution, Wolfram Mathematica computational software has been used as a calculation tool. The analysis of numerical solution allowed to draw conclusions about the possibility of its application in evaluation of velocity profile when drilling fluid moves in annular space of the well. The possibility for application of modified excess coefficient as a relative quantitative parameter for evaluation of velocity profile uniformity was substantiated.
-
Date submitted2021-12-19
-
Date accepted2022-05-13
-
Date published2022-07-13
Development of a pump-ejector system for SWAG injection into reservoir using associated petroleum gas from the annulus space of production wells
Implementation of SWAG technology by means of water-gas mixtures is a promising method of enhanced oil recovery. The use of associated petroleum gas as a gas component in the water-gas mixture allows to significantly reduce the amount of irrationally consumed gas and carbon footprint. Relevant task is to choose a simple, reliable and convenient equipment that can operate under rapidly changing operating conditions. Such equipment are pump-ejector systems. In order to create water-gas mixture it is proposed to use associated gas from the annulus space. This solution will reduce the pressure in the annulus space of the production well, prevent supply disruption and failure of well equipment. The paper presents a principal technological scheme of the pump-ejector system, taking into account the withdrawal of gas from the annulus space of several production wells. The layout of the proposed system enables more efficient implementation of the proposed technology, which expands the area of its application. Experimental investigations of pressure and energy characteristics of the ejector have been carried out. Analysis of the obtained data showed that it was possible to increase the value of maximum efficiency. The possibility of adapting the system in a wide range of changes in operating parameters has been established. Recommendations on selection of a booster pump depending on the values of working pressure and gas content are given.
-
Date submitted2021-09-22
-
Date accepted2022-03-24
-
Date published2022-04-29
Predicting dynamic formation pressure using artificial intelligence methods
Determining formation pressure in the well extraction zones is a key task in monitoring the development of hydrocarbon fields. Direct measurements of formation pressure require prolonged well shutdowns, resulting in underproduction and the possibility of technical problems with the subsequent start-up of wells. The impossibility of simultaneous shutdown of all wells of the pool makes it difficult to assess the real energy state of the deposit. This article presents research aimed at developing an indirect method for determining the formation pressure without shutting down the wells for investigation, which enables to determine its value at any time. As a mathematical basis, two artificial intelligence methods are used – multidimensional regression analysis and a neural network. The technique based on the construction of multiple regression equations shows sufficient performance, but high sensitivity to the input data. This technique enables to study the process of formation pressure establishment during different periods of deposit development. Its application is expedient in case of regular actual determinations of indicators used as input data. The technique based on the artificial neural network enables to reliably determine formation pressure even with a minimal set of input data and is implemented as a specially designed software product. The relevant task of continuing the research is to evaluate promising prognostic features of artificial intelligence methods for assessing the energy state of deposits in hydrocarbon extraction zones.
-
Date submitted2020-06-16
-
Date accepted2020-11-09
-
Date published2020-12-29
Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology
To solve the problems accompanying the development of forecasting methods, a probabilistic method of data analysis is proposed. Using a carbonate object as an example, the application of a probabilistic technique for predicting the effectiveness of proppant hydraulic fracturing (HF) technology is considered. Forecast of the increase in the oil production of wells was made using probabilistic analysis of geological and technological data in different periods of HF implementation. With the help of this method, the dimensional indicators were transferred into a single probabilistic space, which allowed performing a comparison and construct individual probabilistic models. An assessment of the influence degree for each indicator on the HF efficiency was carried out. Probabilistic analysis of indicators in different periods of HF implementation allowed identifying universal statistically significant dependencies. These dependencies do not change their parameters and can be used for forecasting in different periods of time. Criteria for the application of HF technology on a carbonate object have been determined. Using individual probabilistic models, integrated indicators were calculated, on the basis of which regression equations were constructed. Equations were used to predict the HF efficiency on forecast samples of wells. For each of the samples, correlation coefficients were calculated. Forecast results correlate well with the actual increase (values of the correlation coefficient r = 0.58-0.67 for the examined samples). Probabilistic method, unlike others, is simple and transparent. With its use and with careful selection of wells for the application of HF technology, the probability of obtaining high efficiency increases significantly.
-
Date submitted2019-03-11
-
Date accepted2019-05-11
-
Date published2019-08-23
Estimate of Radial Drilling Technology Efficiency for the Bashkir Operational Oilfields Objects of Perm Krai
- Authors:
- S. V. Galkin
- A. A. Kochnev
- V. I. Zotikov
The radial drilling technology efficiency for carbonate bashkir deposits of Perm Krai is considered. The geological structure of a productive part of bashkir layer is characterized by high degree of heterogeneity that promotes while drilling radial channels involvement in development additional interlayers that earlier was not drained. During the analysis the main geological process parameters affecting drilling technology efficiency were revealed. According to the dynamics of average daily oil production growth, palettes were built to forecast additional oil production as a result of radial drilling activities. Using the pallets, it is possible to predict the total additional oil production, well operating time with the effect of radial drilling and average daily oil production growth for each year. It was found that hydrochloric acid treatments performed on wells prior to radial drilling significantly reduce the effectiveness of radial drilling technology. For such wells, the value of the correction is statistically substantiated, which reduces the predictive estimate of the increase in oil production. A model was built to assess the increase in oil production in the first year after the event and an algorithm for calculating the total additional oil production was developed using linear discriminant analysis. For the resulting model, errors are calculated that are compared with the forecast efficiency of standard methods for oil-producing enterprises. This model shows a much more accurate correspondence of forecast results to actual technology application results. The probability of the event high efficiency increases significantly with a more detailed approach to the selection of wells for radial drilling. According to the forecast methodology, the technology’s efficiency was calculated and recommendations for its implementation for the wells of the Bashkir production objects were made in the interests of an oil-producing enterprise.
-
Date submitted2019-01-17
-
Date accepted2019-03-20
-
Date published2019-06-25
Improving methodological approach to measures planning for hydraulic fracturing in oil fields
Goal of the research is development of an integrated approach to the planning of hydraulic fracturing (HF) treatment taking into account geo-technical, hydrodynamic, technological and economic criteria for the selection of wells for inclusion in the programs of HF with increasing importance of economic criteria. Stages of formation of the program for HF of the oil company are selected, systematized and analyzed. It is shown that high potential effectiveness of enhanced oil recovery method in fields with hard-to-recover reserves, on the one hand, and the complexity and high cost of application, on the other, determine the need to optimize the parameters of this business process at all stages of implementation and improve its planning methods. The priority directions for improving the hydraulic fracturing planning were justified: a clear definition of the criterion for the payback period of hydraulic fracturing activities, taking into account their technological features, improving the procedure for calculating the costs of implementing this technology and improving the reasonableness of selecting candidate wells for inclusion in the hydraulic fracturing program. Feasibility of using an additional criterion in the formation of hydraulic fracturing programs – marginal minimum cost-effective wall capacity – has been shown and a method for calculating it has been developed. The use of this criterion will allow to take into account not only technological limitations, but also limits of economic efficiency of conducting hydraulic fracturing at each specific well and, at the preliminary selection of candidate wells, exclude a priori unprofitable measures.
-
Date submitted2008-10-18
-
Date accepted2008-12-24
-
Date published2009-12-11
Higher efficiency in drilling of oil and gas wells under complicated conditions
- Authors:
- N. I. Nikolaev
- A. I. Ivanov
The results of researches of properties of the new native waterswelling polymer «Petrosorb» are given. Description is given to the design of plugging-up tool for liquidation of catastrophic absorption of flushing fluid in the course of drilling of oil and gas wells.