-
Date submitted2024-03-29
-
Date accepted2024-11-07
-
Date published2025-02-26
Well killing with absorption control
The development of new fields with low-permeability reservoirs required the introduction of new production technologies, of which the most significant for well killing and underground repair were multi-ton hydraulic fracturing, the simultaneous operation of two or three development sites by one well grid, and an increase in the rate of fluid extraction. These global decisions in field development have led to the need to search for new effective materials and technologies for well killing. The article is devoted to the analysis of problems associated with the process of killing production wells in fields characterized by increased fracturing, both natural and artificial (due to hydraulic fracturing), with reduced reservoir pressure and a high gas factor. The relevance of the analysis is due to the increase in the number of development sites where complications arise when wells are killed. Particular attention is paid to technical solutions aimed at preserving the filtration and capacity properties of the bottomhole formation zone, preventing the absorption of process fluid, and blocking the manifestation of gas. The classification of block-packs used in killing is given, based on the nature of the process fluid. Suspension thickened water-salt solutions are considered, forming a waterproof crust on the surface of the rock, which prevents the penetration of water and aqueous solutions into the formation. This approach ensures the safety and efficiency of killing operations, especially when working with formations in which maintaining water saturation and preventing the ingress of the water phase are of critical importance. Modern trends in the development of technology are revealed, and promising areas for further improvement of well killing with absorption control are outlined.
-
Date submitted2022-05-06
-
Date accepted2022-11-17
-
Date published2023-02-27
Comprehensive study of filtration properties of pelletized sandy clay ores and filtration modes in the heap leaching stack
There are the results of a study of the factors determining the formation and changes in the filtration properties of a heap leaching stack formed from pelletized poor sandy-clay ores. An analysis of methods of investigation of filtration properties of ore material for different stages of heap leaching plots functioning is carried out. Influence of segregation process during stack dumping on formation of zones with very different permeability parameters of ore has been established by experimental and filtration works. The construction and application of a numerical model of filtration processes in pelletized ores based on laboratory experiments is shown. By means of solution percolation simulation at different irrigation intensities the justification of optimal stack parameters is provided in terms of the geomechanical stability and prevention of solution level rise above the drainage layer.
-
Date submitted2020-10-26
-
Date accepted2021-07-28
-
Date published2021-10-21
Investigation of the influence of the geodynamic position of coal-bearing dumps on their endogenous fire hazard
The paper investigates the hypothesis according to which one of the factors influencing the spontaneous combustion of coal-bearing dumps is its geodynamic position, i.e. its location in the geodynamically dangerous zone (GDZ) at the boundary of the Earth crust blocks. This hypothesis is put forward on the basis of scientific ideas about the block structure of the Earth crust and the available statistical data on the location of burning dumps and is studied using computer modeling. A dump located in the area of Eastern Donbass was chosen as the object of research. The simulation results show that the penetration of air into the dump body from the mine through the GDZ, which crosses the mining zone, is possible at an excess pressure of 1000 Pa created by the main ventilation fans. The fire source appearance in the dump body causes an increase in the temperature of the dump mass and becomes a kind of trigger that "turns on" the aerodynamic connection between the dump and the environment, carried out through the GDZ. It is concluded that the establishment of an aerodynamic connection between the mine workings and the dump through the GDZ can be an important factor contributing to the endogenous fire hazard of coal-bearing dumps. The simulation results can be used in the development of projects for monitoring coal-bearing dumps and measures to combat their spontaneous combustion.
-
Date submitted2020-05-05
-
Date accepted2020-10-05
-
Date published2020-11-24
Assessment of the Influence of Water Saturation and Capillary Pressure Gradients on Size Formation of Two-Phase Filtration Zone in Compressed Low-Permeable Reservoir
The paper examines the influence of capillary pressure and water saturation ratio gradients on the size of the two-phase filtration zone during flooding of a low-permeable reservoir. Variations of water saturation ratio s in the zone of two-phase filtration are associated with the pressure variation of water injected into the reservoir; moreover the law of variation of water saturation ratio s ( r , t ) must correspond to the variation of injection pressure, i.e. it must be described by the same functions, as the functions of water pressure variation, but be subject to its own boundary conditions. The paper considers five options of s ( r , t ) dependency on time and coordinates. In order to estimate the influence of formation and fluid compressibility, the authors examine Rapoport – Lis model for incompressible media with a violated lower limit for Darcy’s law application and a time-dependent radius of oil displacement by water. When the lower limit for Darcy’s law application is violated, the radius of the displacement front depends on the value of capillary pressure gradient and the assignment of s function. It is shown that displacement front radii contain coefficients that carry information about physical properties of the reservoir and the displacement fluid. A comparison of two-phase filtration radii for incompressible and compressible reservoirs is performed. The influence of capillary pressure gradient and functional dependencies of water saturation ratio on oil displacement in low-permeable reservoirs is assessed. It is identified that capillary pressure gradient has practically no effect on the size of the two-phase filtration zone and the share of water in the arbitrary point of the formation, whereas the variation of water saturation ratio and reservoir compressibility exert a significant influence thereupon.
-
Date submitted2020-06-15
-
Date accepted2020-06-15
-
Date published2020-06-30
Description of steady inflow of fluid to wells with different configurations and various partial drilling-in
- Authors:
- Valery A. Iktissanov
There are many equations of steady inflow of fluid to the wells depending on the type of well, presence or absence of artificial or natural fractures passing through the well, different degrees of drilling-in of the wellbores. For some complex cases, analytical solutions describing the inflow of fluid to the well have not yet been obtained. An alternative to many equations is the use of numerical methods, but this approach has a significant disadvantage – a considerable counting time. In this regard, it is important to develop a more general analytical approach to describe different types of wells with different formation drilling-in and presence or absence of fractures. Creation of this method is possible during modeling of fractures by a set of nodes-vertical wells passing from a roof to floor, and modeling of a wellbore (wellbores, perforation) by a set of nodes – spheres close to each other. As a result, based on this approach, a calculation algorithm was developed and widely tested, in which total inflow to the well consists of the flow rate of each node taking into account the interference between the nodes and considering the impermeable roof and floor of the formation. Performed modeling confirmed a number of known patterns for horizontal wells, perforation, partial drilling-in of a formation, and also allowed solving a number of problems.
-
Date submitted2018-07-12
-
Date accepted2018-09-09
-
Date published2018-12-21
Application of the theory of wavelets for compression and filtration of geoinformation
- Authors:
- A. S. Yarmolenko
- O. V. Skobenko
The purpose of the article is to develop a detailed and accessible technology for the application of wavelets in the processing of geo-information, the subject of research is wavelet-based filtering and compression of geo-information. The research methodology is based on the modern theory of wavelets in the light of linear algebra. Research methods involve study and generalization, abstraction, formalization, mathematical modeling using computer programs compiled by the authors. After the introduction and formulation of the problem, the basic positions of linear algebra are presented, on which the content of the article is based when constructing orthonormal bases in one- and two-dimensional cases. First, the application of the general theory to the decomposition of the vector of initial data in the Haar and Shannon bases is given. Further, on the basis of the Haar basis, orthonormal bases of wavelet transforms and filtering information are constructed. The procedure for creating wavelet filters by a sequence of convolutions, the use of MSA analysis for constructing an orthonormal basis of the wavelet transform is considered. Implemented the practical possibility of wavelet filtering based on specific programs for modeling geo-information data fields and images, data compression and filtering. The result of the work is the methods of constructing orthonormal bases by various methods of wavelet transform, based on which algorithms and corresponding computer programs for geoinformation compression are compiled using the example of terrain and photographic images. The efficiency of geoinformation compression and noise filtering using wavelets was investigated. A method has been developed for determining the value of a filter depending on the accuracy of the initial geo-information, illustrated by the example of calculating the filter value for compressing information about the heights of the terrain. The same technique is recommended for image filtering.
-
Date submitted2018-05-24
-
Date accepted2018-07-20
-
Date published2018-10-24
Moisture content of natural gas in bottom hole zone
- Authors:
- E. A. Bondarev
- I. I. Rozhin
- K. K. Argunova
For the traditional problem of gas flow to a well in the center of circular reservoir, the influence of initial reservoir conditions on dynamics of gas moisture content distribution has been determined. Investigations have been performed in the framework of mathematical model of non-isothermal real gas flow through porous media where heat conductivity was considered to be negligible in comparison with convective heat transfer. It is closed by empirical correlation of compressibility coefficient with pressure and temperature, checked in previous publications. Functional dependence of moisture content in gas on pressure and temperature is based on empirical modification of Bukacek relation. Numerical experiment was performed in the following way. At first step, axisymmetric problem of non-isothermal flow of real gas in porous media was solved for a given value of pressure at the borehole bottom, which gives the values of pressure and temperature as functions of time and radial coordinate. Conditions at the outer boundary of the reservoir correspond to water drive regime of gas production. At the second step, the calculated functions of time and coordinate were used to find the analogous function for moisture content. The results of experiment show that if reservoir temperature essentially exceeds gas – hydrate equilibrium temperature than moisture content in gas distribution is practically reflects the one of gas temperature. In the opposite case, gas will contain water vapor only near bottom hole and at the rest of reservoir it will be almost zero. In both cases, pressure manifests its role through the rate of gas production, which in turn influences convective heat transfer and gas cooling due to throttle effect.
-
Date submitted2010-07-14
-
Date accepted2010-09-07
-
Date published2011-03-21
Substantiation of pumped volumes of flow angularity compositions in injection wells
- Authors:
- A. R. Mavliev
- M. K. Rogachev
- D. V. Mardashov
The method of calculation pumped volumes of flow angularity compositions in injection wells, which based on combination of the seepage theory, laboratory investigation and field experience is developed.