Submit an Article
Become a reviewer

Search articles for by keywords:
гидроксид алюминия

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-10
  • Date accepted
    2024-06-03
  • Date published
    2024-07-19

Combined method for processing spent acid etching solution obtained during manufacturing of titanium products

Article preview

Possessing high strength, low density and significant chemical resistance, titanium has found wide application in various fields of the national economy – the chemical industry, aviation and rocket technology, mechanical engineering, medicine, etc. The production of titanium products is hampered by a fairly strong oxide film covering its surface. Removal of the oxide film from the surface of titanium workpieces is carried out by etching in solutions of mineral acids of various compositions. A spent acid etching solution (SAES) is formed, containing titanium salt and the remainder of unreacted acids. Almost all etching solutions contain HF and one of the strong acids. This is H2SO4, HCl or HNO3. Thus, the SAES includes ions of titanium, fluorine or chlorine, orsulfate, or nitrate. SAES is quite toxic and must be diluted or cleaned several times before being discharged into a reservoir. Most of the methods used to extract impurities contained in SAES lead to a decrease in their content. As a result of such purification, there is a loss of substances contained in SAES in significant quantities and of interest for further use. The work presents experimental results obtained from the combined processing of SAES containing titanium fluoride, hydrofluoric and hydrochloric acids. At the first stage, SAES is treated with sodium hydroxide. The resulting titanium hydroxide precipitate is filtered off. At the second stage, the filtrate containing sodium fluoride and chloride is processed in a membrane electrolyzer. In this case, not only the extraction of sodium salts from the filtrate occurs, but also the production of sodium hydroxide and a mixture of hydrofluoric and hydrochloric acids. Sodium hydroxide can be used for processing SAES, and a mixture of acids for etching titanium workpieces.

How to cite: Bykovskii N.A., Kantor E.A., Shulaev N.S., Fanakov V.S. Combined method for processing spent acid etching solution obtained during manufacturing of titanium products // Journal of Mining Institute. 2024. p. EDN OVECLL
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-19
  • Date accepted
    2023-02-14
  • Date published
    2023-04-25

Electric steelmaking dust as a raw material for coagulant production

Article preview

The paper describes the issues associated with waste generated during steel production and processing, in particular the dust from electric arc furnaces (EAF). An effective solution for the disposal of such waste is its involvement in processing to obtain valuable products. This paper studies the physical and chemical properties of EAF dust produced during the smelting of metallized pellets and captured by the dust and gas cleaning system of the steel-smelting shop at the Oskol Electrometallurgical Combine, Belgorod Region. The results obtained in the study of the chemical and disperse compositions of dust, the microstructure of the surface made it possible to propose the use of dust as a raw material for coagulant production. The conditions of acid-thermal treatment of dust are determined, contributing to the partial dissolution of iron (II), (III), and aluminium compounds, which ensure the coagulation processes during wastewater treatment. Model solutions show high efficiency (> 95 %) of water treatment from heavy metal ions by modified EAF dust.

How to cite: Sverguzova S.V., Sapronova Z.A., Zubkova O.S., Svyatchenko A.V., Shaikhieva K.I., Voronina Y.S. Electric steelmaking dust as a raw material for coagulant production // Journal of Mining Institute. 2023. Vol. 260. p. 279-288. DOI: 10.31897/PMI.2023.23
Metallurgy and concentration
  • Date submitted
    2020-10-22
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Dynamic simulation of industrial-scale gibbsite crystallization circuit

Article preview

Population balance model is crucial for improving the method of aluminum hydroxide massive crystallization and enhancing the quality of control over industrial precipitation trains. This paper presents the updated population balance model, which can be used for simulation of industrial-scale precipitation. Processes of birth-and-spread and particle breakage are considered integral parts of the precipitation process along with secondary nucleation, growth and agglomeration of particles. The conceptual difference of the proposed system of equations is its ability to reproduce the oscillatory process that occurs in precipitation circuits as a result of cyclic changes in the quality of the seed surface. It is demonstrated that self-oscillations can occur in the system without any external influence. The updated model is adjusted and verified using historical industrial data. The simulation of seed-recycle precipitation circuit showed an exact correspondence between the calculated dynamic pattern of changes in particle size distribution of aluminum hydroxide and the actual data.

How to cite: Golubev V.O., Litvinova T.E. Dynamic simulation of industrial-scale gibbsite crystallization circuit // Journal of Mining Institute. 2021. Vol. 247. p. 88-101. DOI: 10.31897/PMI.2021.1.10
Metallurgy and concentration
  • Date submitted
    2019-04-28
  • Date accepted
    2019-06-28
  • Date published
    2019-10-23

Determination of Optimal Fluorine Leaching Parameters from the Coal Part of the Waste Lining of Dismantled Electrolytic Cells for Aluminum Production

Article preview

When aluminum is obtained by electrolysis of cryolite-alumina melts when the baths are sent for capital repairs, a solid technogenic product is formed – waste lining of electrolytic cells (WLEC). The volume of formation of WLEC is 30-50 kg per 1 ton of aluminum. Currently, it is mainly stored at landfills near industrial enterprises, causing harm to the environment. However, this technogenic raw material contains valuable components (fluorine, aluminum, sodium) that can be extracted to produce fluoride salts, which are in demand during the electrolytic production of aluminum. The objects of research were samples of the coal part of the waste lining of dismantled S-8BM (E) type electrolytic cells of «RUSAL Krasnoyarsk» JSC (Krasnoyarsk) of RUSAL company. According to the X-ray experiment diffraction analysis (using a Bruker D8 ADVANCE diffractometer) of the phase composition of the samples, it was found that the main fluorine-containing compounds are cryolite, chiolite, sodium and calcium fluorides. The total fluorine content in the studied samples averaged 13.1 %. We conducted studies on the leaching of fluorine from WLEC with a solution of caustic alkali (NaOH concentration – 17.5 g/dm 3 ). The process was carried out in a mechanically agitated reactor using a BIOSAN MM-1000 top drive laboratory stirrer with a two-blade nozzle. By the method of mathematical planning of a three-factor experiment, the mutual influence of three leaching conditions on the optimization parameter was established – the extraction of fluorine in solution (in percent). The maximum recovery of fluorine from WLEC to the leach solution averaged 86.4 % and was achieved with the following indicators:processtemperature–95 ° C, the ratio ofliquidtosolidphase–9:1,duration– 210 min.

How to cite: Nemchinova N.V., Tyutrin A.A., Somov V.V. Determination of Optimal Fluorine Leaching Parameters from the Coal Part of the Waste Lining of Dismantled Electrolytic Cells for Aluminum Production // Journal of Mining Institute. 2019. Vol. 239. p. 544-549. DOI: 10.31897/PMI.2019.5.544
Metallurgy
  • Date submitted
    2009-08-06
  • Date accepted
    2009-10-10
  • Date published
    2010-02-01

Allocation of tellurium from difficult on structure of sulfuric acid solutions

Article preview

As the main source of reception of tellurium serve electrolytic copper refinery slimes. In the conditions of manufacture expansion and transition on technology decopperizing slimes by pressure leaching O 2 -H 2 SO 4 media, the solution (decopperized product) becomes the basic concentrator of tellurium. Extraction of tellurium from a decopperized (pressure-leached) liquid products is considered. The method allows to raise percent of extraction of tellurium from initial raw materials and to enrich pressure-leached solid product with precious metals.

How to cite: Fokina S.B. Allocation of tellurium from difficult on structure of sulfuric acid solutions // Journal of Mining Institute. 2010. Vol. 186. p. 207-209.
Humanities and fundamental researches
  • Date submitted
    2009-08-27
  • Date accepted
    2009-10-25
  • Date published
    2010-02-01

Regularities of change of water-repellent properties of the nanostructured metal powders on the base of aluminium

Article preview

Regularities of change of water-repellent properties of metal powders on the basis of aluminium depending on the program of nano-structural surface modifying are studyed. The rows of increase of water-repellent properties of modified aluminium on the base of coarse-dispersed and high-dispersed (PAP-2) powders are obtained. Several specimens excelling initial hydrohobic PAP-2 inits water-repellent capacity are found out. The research uses the methods of XP-, EDX- spectroscopy and gravimetry.

How to cite: Zhurenkova L.A., Vakhreneva T.G., Syrkov A.G., Taraban V.V. Regularities of change of water-repellent properties of the nanostructured metal powders on the base of aluminium // Journal of Mining Institute. 2010. Vol. 186. p. 241-244.