-
Date submitted2023-07-19
-
Date accepted2023-07-19
-
Date published2023-07-19
Energy efficiency in the mineral resources and raw materials complex
Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.
-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions
The necessity of improving the drives of the sucker-rod hydraulic pump units (SRHP), operated in conditions of marginal and complicated wells, is substantiated. For complicated oil production conditions, it is promising to use the SRHP drive, which makes it possible to select and set rational operating modes for downhole equipment. The results of comparative tests of conventional mechanical and hydraulic actuators SRHP with pneumatic and electrodynamic balancing types are presented. A generalized indicator for evaluating the effectiveness of the advanced SRHP drives functioning, the energy efficiency coefficient, is proposed. It has been experimentally proven that the use of the SRHP drive with pneumatic balancing is characterized by low energy efficiency of the well fluid production process. The use of the tested SRHP hydraulic drive made it possible to successfully eliminate asphalt, resin, and paraffin deposits and minimize the well downtime. The results of the tests of the traditional SRHP mechanical drive and the hydraulic drive with electrodynamic balancing showed a satisfactory energy efficiency of the latter. The advantage of the SRHP drive with electrodynamic balancing is the simplicity of the design of the hydraulic part. The process of energy regeneration during the drive control system operation causes an increase in the reactive power component in the oil field network and the appearance of harmonic interference that adversely affects the consumers operation. Technical solutions aimed at improving the operation energy efficiency and increasing the operating time of SRHP drives in the conditions of marginal and complicated wells are proposed. The methodological bases for assessing the economic efficiency of the introduction of the advanced SRHP drives are given.
-
Date submitted2023-03-02
-
Date accepted2023-06-20
-
Date published2023-07-19
Improving the efficiency of autonomous electrical complex with renewable energy sources by means of adaptive regulation of its operating modes
Renewable energy sources are gradually becoming useful in mining industry. They are actively used in remote, sparsely populated areas to power shift settlements, geological and meteorological stations, pipeline equipment, mobile cell towers, helicopter pads lighting, etc. In comparison with diesel generators, systems with renewable sources do not require fuel transportation, have short payback periods and flexible configuration for different categories of electrical loads. The main obstacles to their spread are instability of generation and high cost of produced electricity. One of the possible ways to solve these problems is to develop new technologies, increase power density of generators and energy storage systems. The other way represents energy saving and rational use of affordable resources. The new solutions for implementation of the second method are proposed in this work. The object of the study is autonomous DC electrical complex with photovoltaic and wind power sources. In such systems the generated power from renewable sources is transferred to consumers via intermediate DC bus, the voltage level of which affects the power losses in the process of power transmission. The vast majority of complexes have a problem that their DC bus voltage is constant, while the optimum voltage level with lowest losses varies depending on the generated and consumed power. Therefore, electrical complexes potentially lose a part of the transmitted energy. To avoid this, a special algorithm was added to automatically adjust DC bus voltage to optimum level according to changes in working conditions. An additional contribution to efficiency improvement can be made by dynamic change of operating frequency in power converters depending on their load. The evaluation based on results of computer simulation showed that in a complex with rated power 10 kW active power losses during its lifetime can be reduced by 2-5 %.
-
Date submitted2023-03-12
-
Date accepted2023-06-20
-
Date published2023-07-19
Increasing the energy efficiency of an autonomous power supply system of a drilling rig in case of voltage dips
The article discusses the emergency modes of operation of an autonomous electrical complex of a drilling rig. The concept of voltage failure and its influence on the technological process of industrial enterprises is revealed. A description of the methods used in the power supply of industrial enterprises to overcome voltage dips and load surges in autonomous power systems is presented, from which it is possible to single out the accelerated lifting of critical equipment to prevent emergency conditions, as well as the use of backup storage, usually batteries. An algorithm has been developed for the interaction of the battery and the diesel generator set as backup power sources during various modes of operation of the electric motor, taking into account load surges, which allows successfully overcoming voltage dips in the system both in transient and in steady state. It is proposed to use a combined method to eliminate the voltage dip, a feature of which is the use of a combined structure of backup power sources as part of a diesel generator set and a battery, acting on the base of the proposed interaction algorithm in autonomous electrical complexes. The method makes it possible to overcome sudden load surges and voltage dips caused by a shortage of reserve power in the electrical system. The use of a rechargeable battery as a transitional element makes it possible to switch between the main and backup power sources without stopping the technological one and to expand the overload threshold of an autonomous electrical complex up to 60 %. The use of the combined method increases the energy efficiency of the autonomous complex due to a reduction in the number of emergency shutdowns of equipment, process interruptions and additional power consumption.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Energy efficiency of the linear rack drive for sucker rod pumping units
- Authors:
- Oksana Yu. Ganzulenko
- Ani P. Petkova
At present, in order to increase oil production and reduce economic costs in the development of marginal fields, the development of a cluster method using compact mobile drives of sucker rod pumping units (SRPU) is relevant. The aim of the work is to analyze the ways to improve the energy efficiency of the SRPU by reducing the loss of mechanical and electrical energy, to select the most energy-efficient compact drive for the development of marginal fields in the cluster method, to carry out the kinematic and strength calculations of the drive of the selected size, to develop an adaptive control system for a group of drives in the cluster development of drillings. According to the results of the performed calculations, the linear rack-and-gear drive has the highest efficiency of the drive mechanism. The kinematic and strength calculations of a linear rack-and-gear drive with a stroke length of 1120 mm and a load of up to 8 tons are presented. It was shown that the usage of a direct torque control system and a kinetic energy storage system for the SRPU drive elements and a rod string is an effective means of reducing energy costs in oil production from marginal fields. The use of the developed system for storing and redistributing the potential energy of the rods between the SRPUs that lift oil made it possible to eliminate fluctuations in the power consumption, reduce the power peak value by three times, the peak value of the current consumed from the electric network by two times, and reduce losses in the input converter and cables by three times.
-
Date submitted2023-04-02
-
Date accepted2023-06-20
-
Date published2023-07-19
Integration of renewable energy at coal mining enterprises: problems and prospects
This article addresses the issue of developing renewable energy in coal mining enterprises in the Russian Federation. The study presents a methodology for assessing the technical and economic efficiency of introducing renewable energy sources based on simulation modeling. An analysis of the potential of solar and wind energy for coal mining regions in Russia is conducted. The authors use a custom software developed by them to simulate the power supply system for various scenarios of renewable energy integration, including solar generation, wind generation, solar generation with energy storage, wind generation together with solar generation. Based on the example of the Rostov region, a feasibility study of the considered options is presented. Additionally, the research includes a sensitivity analysis of the investment project in the conditions of uncertainty in the development of Russian renewable energy. The research findings indicate that even in market conditions with CO2 emission quotas and prices at the level of the Sakhalin experiment, renewable energy in coal mining enterprises in Russia remains unattractive and requires additional support.
-
Date submitted2022-10-13
-
Date accepted2022-12-13
-
Date published2023-07-19
A complex model of a drilling rig rotor with adjustable electric drive
A modified mathematical model of an asynchronous electric drive of the rotor – a drill string – a bit – a rock is considered and implemented, which develops and generalizes the results of previously performed studies. The model includes the following subsystems: a model of an asynchronous drive with vector control; a model of formation of the resistance moment at the bottom of the bit, taking into account the peculiarities of the interaction between the bit and the rock; a model of a multi-mass mechanical part that takes into account the deformation of the drill string; subsystem for the drilling rig energy-technological parameters formation. The integrated model makes it possible to calculate and evaluate the selected drilling modes, taking into account their electro-mechanical, energy and technological efficiency and the dynamics of drilling processes. The performed computer simulation of drilling modes confirmed the possibility of a stick-slip effect accompanied by high-frequency vibrations during bit stops, which may change the direction of rotation of the bit, its accelerated wear and unscrewing of the drilling tool. Long bit stops lead to a significant decrease in the average bit rotation speed, which can explain the decrease in the ROP and increase in energy consumption when drilling in the zone of unstable bit rotation. The model can be used as a base for further improvement of rotary drilling control systems.
-
Date submitted2020-12-24
-
Date accepted2021-10-18
-
Date published2021-12-16
Natural gas methane number and its influence on the gas engine working process efficiency
The natural gas usage as a vehicle fuel in the mining industry is one of the priority tasks of the state. The article pays special attention to the component composition of natural gas from the point of view of its thermal efficiency during combustion in the combustion chamber of a power plant on a heavy-duty vehicle in difficult quarry conditions. For this, domestic and foreign methods for determining the main indicator characterizing the knock resistance of fuel in the combustion process – the methane number – are considered. Improvement of technical and economic indicators will be carried out by changing the composition of the gas mixture based on methane to fit the design features of the gas power plant, the methane number will be the determining indicator. A theoretical analysis of the influence of the methane number on such engine parameters as the compression ratio and the maximum speed of the flame front propagation in the second phase of combustion in the engine cylinder, expressed through the angle of rotation of the crankshaft, is presented. Based on the results of theoretical and experimental studies, the dependences of the influence of the methane number on the efficiency of the working process of the engine and its external speed characteristic were obtained.
-
Date submitted2020-07-22
-
Date accepted2020-11-12
-
Date published2020-12-29
Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system
- Authors:
- Vyacheslav A. Voronin
- Fedor S. Nepsha
This paper considers the problem of electric drive of shearers simulation to assess the indicators of power supply system (PSS) energy efficiency in the context of the introduction of modern devices for controlling the flow of electricity and power. The block diagram of the shearer electric drive simulation model is presented. To take into account fluctuations in the level of consumption of active and reactive power, a model of the executive body of the shearer was used in the work, including a model of the moment of resistance on the auger when cutting. As a result, in the MATLAB Simulink environment, a simulation model of the electric drive of the UKD300 shearer was developed, suitable for assessing the energy efficiency of the electrical complex of mining areas and the feasibility of using modern devices for controlling the flow of electricity and power. As a result of the simulation, it was found that a significant irregularity in the graph of reactive power consumption, caused by repeated short-term operation, makes the use of capacitor units ineffective to compensate for reactive power.
-
Date submitted2019-03-25
-
Date accepted2019-05-14
-
Date published2019-08-23
Increase in Intake Capacity by Dynamic Operation of Injection Wells
- Authors:
- E. V. Belonogov
- A. Yu. Korovin
- A. A. Yakovlev
The method of pumping water to compensate for fluid withdrawals from an oil formation in order to maintain formation pressure has long established itself as an effective technology and is widely used at oil and gas fields. At the same time, field operator is often faced with the problem of reduction in the intake capacity of injection wells, which may be caused by various complications arising in the near-wellbore area due to a violation of water treatment technology or other factors. This problem is typical for reservoirs with low permeability values, which leads to a decrease in the performance indicators of the formation pressure maintenance system. In order to counter contamination of the bottomhole zone of the well, as a rule, injection of specialized acid compositions for the purpose of cleaning is used. To increase the effectiveness of this procedure, the authors of the article propose to discharge the injection well at the maximum permissible speeds. This event will allow primary cleaning of the bottomhole zone of the formation from moving particles clogging the pore space, and reduce formation pressure in the vicinity of the injection well, which will subsequently improve the intake capacity of the well during treatment with acid compositions. The decrease in formation pressure in the bottomhole zone of the well also has a positive effect on the radius of acid penetration into the formation. The proposed approach has been successfully tested on a number of injection wells at one of «Gazprom Neft» enterprises. The results of pilot operations showed an increase in the quality of cleaning the bottomhole zone of the formation and an increase in the intake capacity of injection wells with subsequent preservation of intake dynamics.
-
Date submitted2018-11-13
-
Date accepted2019-01-23
-
Date published2019-04-23
Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation
- Authors:
- A. V. Ugolnikov
- N. V. Makarov
The balance of electricity consumption a significant part is occupied by the production of compressed air at the mining enterprises. Many compressor stations of enterprises are equipped with automated parameter management systems that allow reliable, uninterrupted and safe operation of the compressor facilities. But the majority of automation systems at compressor stations do not perform the function of monitoring the energy efficiency indicators of the operation of a compressor station. The article discusses the issue of including compressed air flow sensors (flow meters) in an automated control system of a compressor station, which allows you to control the production of compressed air and the consumption of electrical energy for its production. Monitoring and recording of these parameters makes it possible, using microprocessor technology, to control one of the main indicators of energy efficiency – the specific energy consumption for producing one cubic meter of compressed air, determine how efficiently the compressor station works, and take appropriate measures to reduce specific energy consumption in time. . The use of additional functions of automated control and monitoring systems will allow the development and application of energy-saving measures aimed at improving the energy efficiency of the enterprise, which will lead to a reduction in the cost of finished products and increase their competitiveness
-
Date submitted2018-01-15
-
Date accepted2018-02-28
-
Date published2018-06-22
About the role of hydrafed calcium carboaluminates in improving the technology of complex processing of nephelines
- Authors:
- V. M. Sizyakov
- V. N. Brichkin
The scientific justification and development of the method for industrial synthesis of complex aluminates of alkaline earth metals is an innovative solution that determined several directions in the development of technology for complex processing of nepheline raw materials. It ensures the production of high-quality metallurgical alumina, the effective utilization of nepheline sludge and production of new types of multipurpose by-products. The modern development of these technical solutions is associated with ensuring the energy efficiency of the synthesis of hydrafed calcium carboaluminates (HCCA) and increasing the level of purification of aluminate solutions. The conditions for synthesizing HCCA with the use of calcareous materials of natural and technogenic origin have been experimentally determined, which makes it possible to isolate the average particle diameter as one of the determining factors of this process. The effect of the turnover of the hydrogarnet sludge on the removal of kinetic limitations in the process of deep desalination of aluminous solutions is theoretically justified. The conditions of a two-stage dosage of HCCA are experimentally determined. It is shown that the optimum ratio of the amount of the reagent supplied in the first and second stages is about 3: 2. At the same time, the maximum degree of precipitation of silica provides the production of aluminate solutions with a silicon module at the level of 95,000, which is achieved by using a HCCA synthesized based on chemically precipitated calcium carbonate in the processing of wastes from the production of mineral fertilizers.
-
Date submitted2015-08-12
-
Date accepted2015-10-05
-
Date published2016-04-22
Energy efficient electromechanical systems of mining andtransport machines
- Authors:
- A. E. Kozyaruk
The problems of selecting the type and the structure of mining and transport machines elec-tromechanical control system, providing energy efficiency and performance. The conclusion about the most admissibility of variable frequency drives with induction motors and power semiconduc-tor converters was made. The methods and technical means of improving the energy efficiency of asynchronous electric motors due to the choice of increased power characteristics motors, design of special motor control algorithms and applying of semiconductor converters with active rectifi-ers, providing high power factor and improving of the electricity supply quality were reviewed. To improve the operational characteristics prompted use of diagnostic systems and residual life as-sessment of electrical equipment. Implementation of designs tied to the excavator-transport sector. The schemes of the excavator power drive, mining truck and implemented complex picture at coal mine are shown.
-
Date submitted2008-11-03
-
Date accepted2009-01-16
-
Date published2009-12-11
The economic mechanism of realization of the policy in power savings sphere
- Authors:
- I. I. Kashtanova
In article priority directions in the field of power savings are considered. On an example of the largest oil and gas companies experience of increase of power efficiency and possibility of its application in the Russian conditions is analysed. The basic directions of ecological efficiency are considered.