On the need to refine triaxial testing methods for investigating the mechanical behaviour of salt rocks and salt-based geomaterials
- 1 — Postgraduate Student Belarusian State University ▪ Orcid ▪ Elibrary ▪ Scopus ▪ ResearcherID
- 2 — Ph.D., Dr.Sci. Head of Department Belarusian State University ▪ Orcid ▪ Elibrary ▪ Scopus ▪ ResearcherID
- 3 — Ph.D. Head of Department LLC ProTech Engineering ▪ Orcid ▪ Elibrary
Abstract
This paper addresses the necessity of refining standard triaxial testing methods for characterizing the mechanical behaviour of salt rocks. Triaxial testing is a key tool for determining the strength and deformation characteristics of rocks; however, existing standards often fail to account for the unique features of salts, such as their highly plastic behaviour, creep, temperature sensitivity, and defect-healing capability. The work highlights the critical importance of considering large strains and volumetric changes of specimens during testing, as this enables a more accurate representation of the behaviour of salt rocks, as this enables a more accurate representation of the behaviour of salt rocks. It is proposed that current standards be updated by incorporating well-established correction equations for geometry evolution and volumetric strain, as well as by adopting the Hencky strain measure. Experimental results obtained on natural salt rock specimens and salt-based geomaterials demonstrate significant errors in the evaluation of the stress-strain state when traditional data-processing methods are applied without accounting for the specific properties of salts. The analysis underscores the need to revise existing triaxial testing standards in line with the proposed approaches, thereby improving the accuracy and reproducibility of data that underpin geomechanical modelling and engineering design.
References
- Karev V.I., Khimulia V.V., Shevtsov N.I. Experimental Studies of the Deformation, Destruction and Filtration in Rocks: A Review. Mechanics of Solids. 2021. Vol. 56. N 5, p. 613-630. DOI: 10.3103/S0025654421050125
- Hunsche U., Albrecht H. Results of true triaxial strength tests on rock salt. Engineering Fracture Mechanics. 1990. Vol. 35. Iss. 4-5, p. 867-877. DOI: 10.1016/0013-7944(90)90171-C
- Ilyinov M.D., Petrov D.N., Karmanskiy D.A., Selikhov A.A. Physical simulation aspects of structural changes in rock samples under thermobaric conditions at great depths. Mining Science and Technology. 2023. Vol. 8. N 4, p. 290-302. DOI: 10.17073/2500-0632-2023-09-150
- Stavrogin A.N., Tarasov B.G. Experimental physics and mechanics of rocks. Saint Petersburg: Nauka, 2001, p. 343 (in Russian).
- Shi-Yuan Li, Urai J.L. Rheology of rock salt for salt tectonics modeling. Petroleum Science. 2016. Vol. 13. Iss. 4, p. 712-724. DOI: 10.1007/s12182-016-0121-6
- Konstantinova S.A., Aptukov V.N. Selected problems in the mechanics of deformation and failure of salt rocks. Novosibirsk: Nauka, 2013, p. 191 (in Russian).
- Zilbershmidt V.G., Zilbershmidt V.V., Naimark O.B. Failure of salt rocks. Moscow: Nauka, 1992, p. 142 (in Russian).
- Schléder Z., Burliga S., Urai J.L. Dynamic and static recrystallization-related microstructures in halite samples from the Klodawa salt wall (central Poland) as revealed by gamma-irradiation. Neues Jahrbuch für Mineralogie. 2007. Vol. 184. Iss. 1, p. 17-28. DOI: 10.1127/0077-7757/2007/0079
- Urai J.L., Spiers C.J. The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. The Mechanical Behavior of Salt – Understanding of THMC Processes in Salt. CRC Press, 2007, p. 149-158. DOI: 10.1201/9781315106502
- Skvortsova Z.N. Recrystallization Creep As a Form of Adsorption Plastification. Protection of Metals and Physical Chemistry of Surfaces. 2013. Vol. 49. N 5, p. 510-516. DOI: 10.1134/S2070205113050080
- van Oosterhout B.G.A., Hangx S.J.T, Spiers C.J. Mechanisms of dilatancy in rock salt at the grain-scale and implications for the dilatancy boundary. The Mechanical Behavior of Salt X. CRC Press, 2022, p. 25-37. DOI: 10.1201/9781003295808-03
- Vandeginste V., Yukun Ji, Buysschaert F., Anoyatis G. Mineralogy, microstructures and geomechanics of rock salt for underground gas storage. Deep Underground Science and Engineering. 2023. Vol. 2. Iss. 2, p. 129-147. DOI: 10.1002/dug2.12039
- Fan Yang, Jinyang Fan, Zhenyu Yang et al. Plasticity analysis and constitutive model of salt rock under different loading speeds. Journal of Energy Storage. 2023. Vol. 67. N 107583. DOI: 10.1016/j.est.2023.107583
- Lu Wang, Jianfeng Liu, Huining Xu, Yangmengdi Xu. Research on Confining Pressure Effect on Mesoscopic Damage of Rock Salt Based on CT Scanning. Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering. Springer, 2018, p. 254-262. DOI: 10.1007/978-981-13-0113-1_28
- Holländer R., Schröter U.-C., Wilke F.H. Experiences with slim Solution Mining Caverns for ventilation purposes in a potash mine. Kali und Steinsalz. Verband der Kali- und Salzindustrie, 2012. Iss. 1, p. 32-37.
- Woods P.J.E. The geology of Boulby Mine. Economic Geology. 1979. Vol. 74. N 2, p. 409-418. DOI: 10.2113/gsecongeo.74.2.409
- Baryakh А.А., Smirnov E.V., Kvitkin S.Y., Tenison L.O. Russian potash industry: Issues of rational and safe mining. Russian Mining Industry. 2022. N 1, p. 41-50 (in Russian). DOI: 10.30686/1609-9192-2022-1-41-50
- Kravcenko O.S., Filimonov Yu.L. Deformation of rock salt under increased temperature. Mining Informational and Analytical Bulletin. 2019. N 1, p. 69-76 (in Russian). DOI: 10.25018/0236-1493-2019-01-0-69-76
- Shkuratnik V.L., Kravchenko O.S., Filimonov Yu.L. Stresses and Temperature Affecting Acoustic Emission and Rheological Characteristics of Rock Salt. Journal of Mining Science. 2019. Vol. 55. N 4, p. 531-537. DOI: 10.1134/S1062739119045879
- Salzer K., Günther R.-M., Minkley W. et al. Joint project III on the comparison of constitutive models for the mechanical behavior of rock salt II. Extensive laboratory test program with clean salt from WIPP. Mechanical Behaviour of Salt VIII. CRC Press, 2015, p. 3-12. DOI: 10.1201/b18393
- Sriapai T., Walsri C., Fuenkajorn K. Effect of temperature on compressive and tensile strengths of salt. ScienceAsia. 2012. Vol. 38, p. 166-174. DOI: 10.2306/scienceasia1513-1874.2012.38.166
- Günther R.-M., Salzer K., Popp T., Lüdeling C. Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling. Rock Mechanics and Rock Engineering. 2015. Vol. 48. Iss. 6, p. 2603-2613. DOI: 10.1007/s00603-015-0839-2
- Hansen F., Popp T., Wieczorek K., Stührenberg D. Salt reconsolidation applied to repository seals. Mechanical Behaviour of Salt VIII. CRC Press, 2015, p. 179-189. DOI: 10.1201/b18393
- Fuenkajorn K., Phueakphum D. Laboratory assessment of healing of fractures in rock salt. Bulletin of Engineering Geology and the Environment. 2011. Vol. 70. Iss. 4, p. 665-672. DOI: 10.1007/s10064-011-0370-y
- Ilyinov M.D., Kartashov Yu.M., Karmansky A.T., Kozlov V.A. Influence of rock disturbance on their rheological properties. Journal of Mining Institute. 2010. Vol. 185, p. 31-36 (in Russian).
- Aptukov V.N., Volegov S.V. Modeling Concentration of Residual Stresses and Damages in Salt Rock Cores. Journal of Mining Science. 2020. Vol. 56. N 3, p. 331-338. DOI: 10.1134/S1062739120036806
- Hunsche U. Uniaxial and Triaxial Creep and Failure Tests on Rock: Experimental Technique and Interpretation. Visco-Plastic Behaviour of Geomaterials. Springer, 1994, p. 1-53. DOI: 10.1007/978-3-7091-2710-0_1
- Tavostin M.N., Koshelev A.E., Osipov Yu.V. Study of physico-mechanical properties of rock salt with the tentative comprehensive loading. Mining Informational and Analytical Bulletin. 2015. N 2, p. 89-96 (in Russian).
- Wolters R., Sun-Kurczinski J.Q., Düsterloh U. et al. WEIMOS: Laboratory investigation and numerical simulation of damage reduction in rock salt. The Mechanical Behavior of Salt X. CRC Press, 2022, p. 190-199. DOI: 10.1201/9781003295808-18
- Lüdeling C., Günther R.-M., Hampel A. et al. WEIMOS: Creep of rock salt at low deviatoric stresses. The Mechanical Behavior of Salt X. CRC Press, 2022, p. 130-140. DOI: 10.1201/9781003295808-13
- Suggested methods for determining the strength of rock materials in triaxial compression: Revised version. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1983. Vol. 20. Iss. 6, p. 285-290. DOI: 10.1016/0148-9062(83)90598-3
- Aydan Ö., Ito T., Özbay U. et al. ISRM Suggested Methods for Determining the Creep Characteristics of Rock. Rock Mechanics and Rock Engineering. 2014. Vol. 47. Iss. 1, p. 275-290. DOI: 10.1007/s00603-013-0520-6
- La Rochelle P., Leroueil S., Trak B. et al. Observational Approach to Membrane and Area Corrections in Triaxial Tests. Advanced Triaxial Testing of Soil and Rock. ASTM International, 1988, p. 715-731. DOI: 10.1520/STP29110S
- Lade P.V. Triaxial Testing of Soils. Wiley-Blackwell, 2016, p. 432. DOI: 10.1002/9781119106616
- Pankov I.L., Morozov I.A. Salt Rock Deformation under Bulk Multiple-Stage Loading. Journal of Mining Institute. 2019. Vol. 239, p. 510-519. DOI: 10.31897/PMI.2019.5.510
- Asanov V.A., Baryakh A.A., Zhigalkin V.M. et al. Laboratory study of saline rock deformation. Physical Mesomechanics Journal. 2008. Vol. 11. N 1, p. 14-18 (in Russian).
- Guan Wang, Wei Xing, Jianfeng Liu, Lingzhi Xie. Comparison of Triaxial Compression Short-Term Strength Tests and Data Processing Methods for Rock Salt. Clean Energy Systems in the Subsurface: Production, Storage and Conversion. Springer, 2013, p. 305-315. DOI: 10.1007/978-3-642-37849-2_25
- Renbo Gao, Fei Wu, Jie Chen et al. Accurate characterization of triaxial deformation and strength properties of salt rock based on logarithmic strain. Journal of Energy Storage. 2022. Vol. 51. N 104484. DOI: 10.1016/j.est.2022.104484
- Yu Bian, Jianfeng Liu, Guosheng Ding et al. Different Methods to Evaluate Strength from Compression Tests for Rock Salt. Clean Energy Systems in the Subsurface: Production, Storage and Conversion. Springer, 2013, p. 281-291. DOI: 10.1007/978-3-642-37849-2_23
- Rouabhi A., Labaune P., Tijani M. et al. Phenomenological behavior of rock salt: On the influence of laboratory conditions on the dilatancy onset. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11. Iss. 4, p. 723-738. DOI: 10.1016/j.jrmge.2018.12.011
- Karasev M.A., Selikhov A.A., Bychin A.K. Laboratory tests and analysis of mathematical models of deformation of crushed salt rocks. News of the Ural State Mining University. 2023. Iss. 4 (72), p. 94-105 (in Russian). DOI: 10.21440/2307-2091-2023-4-94-105
- Hinze M., Sinan Xiao, Schmidt A., Nowak W. Experimental evaluation and uncertainty quantification for a fractional viscoelastic model of salt concrete. Mechanics of Time-Dependent Materials. 2023. Vol. 27. Iss. 1, p. 139-162. DOI: 10.1007/s11043-021-09534-9
- Sturm P., Moye J., Gluth G.J.G. et al. Properties of alkali-activated mortars with salt aggregate for sealing structures in evaporite rock. Open Ceramics. 2021. Vol. 5. N 100041. DOI: 10.1016/j.oceram.2020.100041
- Jantschik K., Czaikowski O., Moog H.C., Wieczorek K. Investigating the sealing capacity of a seal system in rock salt (DOPAS project). Kerntechnik. 2016. Vol. 81. Iss. 5, p. 571-585. DOI: 10.3139/124.110721
- Baryakh A.A., Konstantinova S.A., Asanov V.A. Deformation of salt rocks. Yekaterinburg: UrO RAN, 1996, p. 204 (in Russian).
- Khloptsov V.G., Semenova M.V., Khloptsov D.V. Mechanical properties of rock salt. Moscow; Izhevsk: Institut kompyuternykh issledovanii, 2022, p. 104 (in Russian).
- Karasev M.A., Selikhov A.A., Bychin A.K. Laboratory study of the backfilling material based on halite waste. Transport, mining and construction engineering: science and production. 2023. N 23, p. 180-188 (in Russian). DOI: 10.26160/2658-3305-2023-23-180-188
- Osipov Yu.V., Voznesensky A.S. Determination of Rheological Properties of Bischofite from Triaxial Tests. Journal of Mining Science. 2022. Vol. 58. N 6, p. 886-895. DOI: 10.1134/S1062739122060023
- Kazlouski Ja.Ja., Zhuravkov M.A. Investigation of the stress-strain state of various types of mine shaft linings in carnallite rock mass. Mechanics of Machines, Mechanisms and Materials. 2023. N 2 (63), p. 53-60 (in Russian). DOI: 10.46864/1995-0470-2023-2-63-53-60
- Aptukov V.N., Volegov S.V. Simulation of the process of deformation and fracture of saliferous rock samples under compression. Bulletin of Perm University. Mathemathics. Mechanics. Computer Science. 2017. Iss. 3 (38), p. 49-54 (in Russian). DOI: 10.17072/1993-0550-2017-3-49-54
- Karasev M.A., Protosenya A.G., Katerov A.M., Petrushin V.V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko-geološko-naftni zbornik. 2022. Vol. 37. N 1, p. 151-162. DOI: 10.17794/rgn.2022.1.13
- Trufanov A.N., Rostovtsev A.V. Current changes in the field of interstate and national standards for determining the mechanical characteristics of soils. Mezhdunarodnyi stroitelnyi kongress. Nauka. Innovatsii. Tseli. Stroitel'stvo: Sbornik tezisov dokladov. Moscow: NITs “Stroitelstvo”, 2023, p. 118-119 (in Russian). DOI: 10.37538/2949-219Х-2023-118-119
- Ilinov M.D., Korshunov V.A., Pospekhov G.B., Shokov A.N. Integrated experimental research of mechanical properties of rocks: Problems and solutions. Gornyi zhurnal. 2023. N 5, p. 11-18 (in Russian). DOI: 10.17580/gzh.2023.05.02