Submit an Article
Become a reviewer
Vol 276 Iss. 2
Pages:
157-169
In press

On the need to refine triaxial testing methods for investigating the mechanical behaviour of salt rocks and salt-based geomaterials

Authors:
Jauheni Ja. Kazlouski1
Michael A. Zhuravkov2
Sergei I. Bogdan3
About authors
Date submitted:
2024-08-26
Date accepted:
2025-07-16
Online publication date:
2025-12-03

Abstract

This paper addresses the necessity of refining standard triaxial testing methods for characterizing the mechanical behaviour of salt rocks. Triaxial testing is a key tool for determining the strength and deformation characteristics of rocks; however, existing standards often fail to account for the unique features of salts, such as their highly plastic behaviour, creep, temperature sensitivity, and defect-healing capability. The work highlights the critical importance of considering large strains and volumetric changes of specimens during testing, as this enables a more accurate representation of the behaviour of salt rocks, as this enables a more accurate representation of the behaviour of salt rocks. It is proposed that current standards be updated by incorporating well-established correction equations for geometry evolution and volumetric strain, as well as by adopting the Hencky strain measure. Experimental results obtained on natural salt rock specimens and salt-based geomaterials demonstrate significant errors in the evaluation of the stress-strain state when traditional data-processing methods are applied without accounting for the specific properties of salts. The analysis underscores the need to revise existing triaxial testing standards in line with the proposed approaches, thereby improving the accuracy and reproducibility of data that underpin geomechanical modelling and engineering design.

Область исследования:
Geotechnical Engineering and Engineering Geology
Keywords:
laboratory testing triaxial testing salt rocks rock mechanics standards
Go to volume 276

References

  1. Karev V.I., Khimulia V.V., Shevtsov N.I. Experimental Studies of the Deformation, Destruction and Filtration in Rocks: A Review. Mechanics of Solids. 2021. Vol. 56. N 5, p. 613-630. DOI: 10.3103/S0025654421050125
  2. Hunsche U., Albrecht H. Results of true triaxial strength tests on rock salt. Engineering Fracture Mechanics. 1990. Vol. 35. Iss. 4-5, p. 867-877. DOI: 10.1016/0013-7944(90)90171-C
  3. Ilyinov M.D., Petrov D.N., Karmanskiy D.A., Selikhov A.A. Physical simulation aspects of structural changes in rock samples under thermobaric conditions at great depths. Mining Science and Technology. 2023. Vol. 8. N 4, p. 290-302. DOI: 10.17073/2500-0632-2023-09-150
  4. Stavrogin A.N., Tarasov B.G. Experimental physics and mechanics of rocks. Saint Petersburg: Nauka, 2001, p. 343 (in Russian).
  5. Shi-Yuan Li, Urai J.L. Rheology of rock salt for salt tectonics modeling. Petroleum Science. 2016. Vol. 13. Iss. 4, p. 712-724. DOI: 10.1007/s12182-016-0121-6
  6. Konstantinova S.A., Aptukov V.N. Selected problems in the mechanics of deformation and failure of salt rocks. Novosibirsk: Nauka, 2013, p. 191 (in Russian).
  7. Zilbershmidt V.G., Zilbershmidt V.V., Naimark O.B. Failure of salt rocks. Moscow: Nauka, 1992, p. 142 (in Russian).
  8. Schléder Z., Burliga S., Urai J.L. Dynamic and static recrystallization-related microstructures in halite samples from the Klodawa salt wall (central Poland) as revealed by gamma-irradiation. Neues Jahrbuch für Mineralogie. 2007. Vol. 184. Iss. 1, p. 17-28. DOI: 10.1127/0077-7757/2007/0079
  9. Urai J.L., Spiers C.J. The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. The Mechanical Behavior of Salt – Understanding of THMC Processes in Salt. CRC Press, 2007, p. 149-158. DOI: 10.1201/9781315106502
  10. Skvortsova Z.N. Recrystallization Creep As a Form of Adsorption Plastification. Protection of Metals and Physical Chemistry of Surfaces. 2013. Vol. 49. N 5, p. 510-516. DOI: 10.1134/S2070205113050080
  11. van Oosterhout B.G.A., Hangx S.J.T, Spiers C.J. Mechanisms of dilatancy in rock salt at the grain-scale and implications for the dilatancy boundary. The Mechanical Behavior of Salt X. CRC Press, 2022, p. 25-37. DOI: 10.1201/9781003295808-03
  12. Vandeginste V., Yukun Ji, Buysschaert F., Anoyatis G. Mineralogy, microstructures and geomechanics of rock salt for underground gas storage. Deep Underground Science and Engineering. 2023. Vol. 2. Iss. 2, p. 129-147. DOI: 10.1002/dug2.12039
  13. Fan Yang, Jinyang Fan, Zhenyu Yang et al. Plasticity analysis and constitutive model of salt rock under different loading speeds. Journal of Energy Storage. 2023. Vol. 67. N 107583. DOI: 10.1016/j.est.2023.107583
  14. Lu Wang, Jianfeng Liu, Huining Xu, Yangmengdi Xu. Research on Confining Pressure Effect on Mesoscopic Damage of Rock Salt Based on CT Scanning. Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering. Springer, 2018, p. 254-262. DOI: 10.1007/978-981-13-0113-1_28
  15. Holländer R., Schröter U.-C., Wilke F.H. Experiences with slim Solution Mining Caverns for ventilation purposes in a potash mine. Kali und Steinsalz. Verband der Kali- und Salzindustrie, 2012. Iss. 1, p. 32-37.
  16. Woods P.J.E. The geology of Boulby Mine. Economic Geology. 1979. Vol. 74. N 2, p. 409-418. DOI: 10.2113/gsecongeo.74.2.409
  17. Baryakh А.А., Smirnov E.V., Kvitkin S.Y., Tenison L.O. Russian potash industry: Issues of rational and safe mining. Russian Mining Industry. 2022. N 1, p. 41-50 (in Russian). DOI: 10.30686/1609-9192-2022-1-41-50
  18. Kravcenko O.S., Filimonov Yu.L. Deformation of rock salt under increased temperature. Mining Informational and Analytical Bulletin. 2019. N 1, p. 69-76 (in Russian). DOI: 10.25018/0236-1493-2019-01-0-69-76
  19. Shkuratnik V.L., Kravchenko O.S., Filimonov Yu.L. Stresses and Temperature Affecting Acoustic Emission and Rheological Characteristics of Rock Salt. Journal of Mining Science. 2019. Vol. 55. N 4, p. 531-537. DOI: 10.1134/S1062739119045879
  20. Salzer K., Günther R.-M., Minkley W. et al. Joint project III on the comparison of constitutive models for the mechanical behavior of rock salt II. Extensive laboratory test program with clean salt from WIPP. Mechanical Behaviour of Salt VIII. CRC Press, 2015, p. 3-12. DOI: 10.1201/b18393
  21. Sriapai T., Walsri C., Fuenkajorn K. Effect of temperature on compressive and tensile strengths of salt. ScienceAsia. 2012. Vol. 38, p. 166-174. DOI: 10.2306/scienceasia1513-1874.2012.38.166
  22. Günther R.-M., Salzer K., Popp T., Lüdeling C. Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling. Rock Mechanics and Rock Engineering. 2015. Vol. 48. Iss. 6, p. 2603-2613. DOI: 10.1007/s00603-015-0839-2
  23. Hansen F., Popp T., Wieczorek K., Stührenberg D. Salt reconsolidation applied to repository seals. Mechanical Behaviour of Salt VIII. CRC Press, 2015, p. 179-189. DOI: 10.1201/b18393
  24. Fuenkajorn K., Phueakphum D. Laboratory assessment of healing of fractures in rock salt. Bulletin of Engineering Geology and the Environment. 2011. Vol. 70. Iss. 4, p. 665-672. DOI: 10.1007/s10064-011-0370-y
  25. Ilyinov M.D., Kartashov Yu.M., Karmansky A.T., Kozlov V.A. Influence of rock disturbance on their rheological properties. Journal of Mining Institute. 2010. Vol. 185, p. 31-36 (in Russian).
  26. Aptukov V.N., Volegov S.V. Modeling Concentration of Residual Stresses and Damages in Salt Rock Cores. Journal of Mining Science. 2020. Vol. 56. N 3, p. 331-338. DOI: 10.1134/S1062739120036806
  27. Hunsche U. Uniaxial and Triaxial Creep and Failure Tests on Rock: Experimental Technique and Interpretation. Visco-Plastic Behaviour of Geomaterials. Springer, 1994, p. 1-53. DOI: 10.1007/978-3-7091-2710-0_1
  28. Tavostin M.N., Koshelev A.E., Osipov Yu.V. Study of physico-mechanical properties of rock salt with the tentative comprehensive loading. Mining Informational and Analytical Bulletin. 2015. N 2, p. 89-96 (in Russian).
  29. Wolters R., Sun-Kurczinski J.Q., Düsterloh U. et al. WEIMOS: Laboratory investigation and numerical simulation of damage reduction in rock salt. The Mechanical Behavior of Salt X. CRC Press, 2022, p. 190-199. DOI: 10.1201/9781003295808-18
  30. Lüdeling C., Günther R.-M., Hampel A. et al. WEIMOS: Creep of rock salt at low deviatoric stresses. The Mechanical Behavior of Salt X. CRC Press, 2022, p. 130-140. DOI: 10.1201/9781003295808-13
  31. Suggested methods for determining the strength of rock materials in triaxial compression: Revised version. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1983. Vol. 20. Iss. 6, p. 285-290. DOI: 10.1016/0148-9062(83)90598-3
  32. Aydan Ö., Ito T., Özbay U. et al. ISRM Suggested Methods for Determining the Creep Characteristics of Rock. Rock Mechanics and Rock Engineering. 2014. Vol. 47. Iss. 1, p. 275-290. DOI: 10.1007/s00603-013-0520-6
  33. La Rochelle P., Leroueil S., Trak B. et al. Observational Approach to Membrane and Area Corrections in Triaxial Tests. Advanced Triaxial Testing of Soil and Rock. ASTM International, 1988, p. 715-731. DOI: 10.1520/STP29110S
  34. Lade P.V. Triaxial Testing of Soils. Wiley-Blackwell, 2016, p. 432. DOI: 10.1002/9781119106616
  35. Pankov I.L., Morozov I.A. Salt Rock Deformation under Bulk Multiple-Stage Loading. Journal of Mining Institute. 2019. Vol. 239, p. 510-519. DOI: 10.31897/PMI.2019.5.510
  36. Asanov V.A., Baryakh A.A., Zhigalkin V.M. et al. Laboratory study of saline rock deformation. Physical Mesomechanics Journal. 2008. Vol. 11. N 1, p. 14-18 (in Russian).
  37. Guan Wang, Wei Xing, Jianfeng Liu, Lingzhi Xie. Comparison of Triaxial Compression Short-Term Strength Tests and Data Processing Methods for Rock Salt. Clean Energy Systems in the Subsurface: Production, Storage and Conversion. Springer, 2013, p. 305-315. DOI: 10.1007/978-3-642-37849-2_25
  38. Renbo Gao, Fei Wu, Jie Chen et al. Accurate characterization of triaxial deformation and strength properties of salt rock based on logarithmic strain. Journal of Energy Storage. 2022. Vol. 51. N 104484. DOI: 10.1016/j.est.2022.104484
  39. Yu Bian, Jianfeng Liu, Guosheng Ding et al. Different Methods to Evaluate Strength from Compression Tests for Rock Salt. Clean Energy Systems in the Subsurface: Production, Storage and Conversion. Springer, 2013, p. 281-291. DOI: 10.1007/978-3-642-37849-2_23
  40. Rouabhi A., Labaune P., Tijani M. et al. Phenomenological behavior of rock salt: On the influence of laboratory conditions on the dilatancy onset. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11. Iss. 4, p. 723-738. DOI: 10.1016/j.jrmge.2018.12.011
  41. Karasev M.A., Selikhov A.A., Bychin A.K. Laboratory tests and analysis of mathematical models of deformation of crushed salt rocks. News of the Ural State Mining University. 2023. Iss. 4 (72), p. 94-105 (in Russian). DOI: 10.21440/2307-2091-2023-4-94-105
  42. Hinze M., Sinan Xiao, Schmidt A., Nowak W. Experimental evaluation and uncertainty quantification for a fractional viscoelastic model of salt concrete. Mechanics of Time-Dependent Materials. 2023. Vol. 27. Iss. 1, p. 139-162. DOI: 10.1007/s11043-021-09534-9
  43. Sturm P., Moye J., Gluth G.J.G. et al. Properties of alkali-activated mortars with salt aggregate for sealing structures in evaporite rock. Open Ceramics. 2021. Vol. 5. N 100041. DOI: 10.1016/j.oceram.2020.100041
  44. Jantschik K., Czaikowski O., Moog H.C., Wieczorek K. Investigating the sealing capacity of a seal system in rock salt (DOPAS project). Kerntechnik. 2016. Vol. 81. Iss. 5, p. 571-585. DOI: 10.3139/124.110721
  45. Baryakh A.A., Konstantinova S.A., Asanov V.A. Deformation of salt rocks. Yekaterinburg: UrO RAN, 1996, p. 204 (in Russian).
  46. Khloptsov V.G., Semenova M.V., Khloptsov D.V. Mechanical properties of rock salt. Moscow; Izhevsk: Institut kompyuternykh issledovanii, 2022, p. 104 (in Russian).
  47. Karasev M.A., Selikhov A.A., Bychin A.K. Laboratory study of the backfilling material based on halite waste. Transport, mining and construction engineering: science and production. 2023. N 23, p. 180-188 (in Russian). DOI: 10.26160/2658-3305-2023-23-180-188
  48. Osipov Yu.V., Voznesensky A.S. Determination of Rheological Properties of Bischofite from Triaxial Tests. Journal of Mining Science. 2022. Vol. 58. N 6, p. 886-895. DOI: 10.1134/S1062739122060023
  49. Kazlouski Ja.Ja., Zhuravkov M.A. Investigation of the stress-strain state of various types of mine shaft linings in carnallite rock mass. Mechanics of Machines, Mechanisms and Materials. 2023. N 2 (63), p. 53-60 (in Russian). DOI: 10.46864/1995-0470-2023-2-63-53-60
  50. Aptukov V.N., Volegov S.V. Simulation of the process of deformation and fracture of saliferous rock samples under compression. Bulletin of Perm University. Mathemathics. Mechanics. Computer Science. 2017. Iss. 3 (38), p. 49-54 (in Russian). DOI: 10.17072/1993-0550-2017-3-49-54
  51. Karasev M.A., Protosenya A.G., Katerov A.M., Petrushin V.V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko-geološko-naftni zbornik. 2022. Vol. 37. N 1, p. 151-162. DOI: 10.17794/rgn.2022.1.13
  52. Trufanov A.N., Rostovtsev A.V. Current changes in the field of interstate and national standards for determining the mechanical characteristics of soils. Mezhdunarodnyi stroitelnyi kongress. Nauka. Innovatsii. Tseli. Stroitel'stvo: Sbornik tezisov dokladov. Moscow: NITs “Stroitelstvo”, 2023, p. 118-119 (in Russian). DOI: 10.37538/2949-219Х-2023-118-119
  53. Ilinov M.D., Korshunov V.A., Pospekhov G.B., Shokov A.N. Integrated experimental research of mechanical properties of rocks: Problems and solutions. Gornyi zhurnal. 2023. N 5, p. 11-18 (in Russian). DOI: 10.17580/gzh.2023.05.02

Similar articles

Conditions of chloride crystallization during well-based exploitation of saturated lithium-bearing brines in the southern part of the Siberian Platform
2025 Anastasiya V. Sergeeva, Alexey V. Kiryukhin, Andrey G. Vakhromeev, Sergey B. Korotkov, Mariya A. Danilova, Elena V. Kartasheva, Anna A. Kuzmina, Mariya A. Nazarova
Granulometry within the kinematic theory of open system transformation
2025 Igor A. Melnik
Gold sorption on modified saponite
2025 Valentin A. Chanturiya, Vladimir G. Minenko, Andrei L. Samusev
Features and informative possibilities of the early radial regime of buildups in horizontal wells with closely spaced multi-stage fractures
2025 Timur A. Abramov, Ilya M. Indrupskii
Recent advances in petrophysical properties, mechanical behavior and durability of calcarenite rocks
2025 Gioacchino F. Andriani
Diamond polygenicity from Carnian deposits of the Bulkur anticline of the northeast Siberian platform
2025 Alla M. Logvinova, Sargylana S. Ugapeva, Evgenii I. Nikolenko, Aleksei O. Serebriannikov, Valentin P. Afanasev