Submit an Article
Become a reviewer

Search articles for by keywords:
compressor stations

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-14
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Monitoring of compressed air losses in branched air flow networks of mining enterprises

Article preview

Compressed air as a type of safe technological energy carrier is widely used in many industries. In economically developed countries energy costs for the production and distribution of compressed air reach 10 % of the total energy costs. The analysis of compressed air production and distribution systems in the industrial sector shows that the efficiency of the systems is at a relatively low level. This is due to the fact that insufficient attention is paid to these systems since the compressed air systems energy monitoring has certain difficulties – the presence of complex and branched air pipeline networks with unique characteristics; low sensitivity of the equipment which consumes compressed air; the complexity of auditing pneumatic equipment that is in constant operation. The article analyzes the options for reducing the cost of production and compressed air distribution. One of the promising ways to reduce the compressed air distribution cost is timely detection and elimination of leaks that occur in the external air supply network of the enterprise. The task is solved by hardware-software monitoring of compressed air pressure at key points in the network. The proposed method allows real-time detecting of emerging air leaks in the air duct network and sending commands to maintenance personnel for their timely localization. This technique was tested in the industrial conditions of ALROSA enterprises on the air pipeline network of the Mir mine of the Mirninsky Mining and Processing Plant and showed satisfactory convergence of the calculated leakage values ​​with the actual ones. The practical significance of the obtained results is that the developed method for monitoring air leaks in the air duct network is simple, it requires an uncomplicated software implementation and allows to localize leaks in a timely manner, thereby reducing unproductive energy costs at the enterprises.

How to cite: Gendler S.G., Kopachev V.F., Kovshov S.V. Monitoring of compressed air losses in branched air flow networks of mining enterprises // Journal of Mining Institute. 2022. Vol. 253 . p. 3-11. DOI: 10.31897/PMI.2022.8
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-20
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Thermal protection implementation of the contact overheadline based on bay controllers of electric transport traction substations in the mining industry

Article preview

The article presents the principle of thermal protection of the contact overheadlineand substantiates the possibility of practical implementation of this principle for rail electric transport in the mining industry. The algorithm for the implementation of modern digital protection of the contact overhead line as one of the functions of the controller is described. A mathematical model of thermal protection is proposed, which follows from the solution of the heat balance equation. The model takes into account the coefficient of the electrical networktopology, as well as the coefficient of consumption of the current-carrying core of the cable, which determines the reduction in the conducting section from contact erosion and the growth of oxide films. Corrections for air flows are introduced when receiving data from an external anemometer, via telemechanics protocol. The mathematical model was tested by writing a real thermal protection program in the C programming language for the bay controller, based on the circuitry of which is the STM32F407IGT6 microcontroller for the microcontroller unit. Verification tests were carried out on a serial bay controller in 2020. The graphs for comparing the calculated and actual values of temperatures, with different flow rates of the current-carrying conductor of the DC cable, are given. To obtain data, telemechanics protocols IEC 60870-104 and Modbus TCP, PLC Segnetics SMH4 were used.

How to cite: Lantsev D.Y., Frolov V.Y., Zverev S.G., Uhrlandt D., Valenta J. Thermal protection implementation of the contact overheadline based on bay controllers of electric transport traction substations in the mining industry // Journal of Mining Institute. 2021. Vol. 251 . p. 738-744. DOI: 10.31897/PMI.2021.5.13
Oil and gas
  • Date submitted
    2021-04-26
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Study of the dynamics for gas accumulation in the annulus of production wells

Article preview

Accumulation of associated petroleum gas in the annulus is one of the negative factors that impede the intensification of mechanized oil production. An increase in annular gas pressure causes growth of bottomhole pressure, a decrease in back pressure to the formation and the inflow of formation fluid. In addition, accumulation of gas in the annulus leads to displacement and a decrease in the liquid level above the submersible pump. Insufficient level of the pump submersion (rod or electric submersible) causes a number of complications in the operation of mechanized production units associated with overheating of the elements in pumping units. Therefore, the development of technologies for optimizing the gas pressure in the annulus is relevant. Method for calculating the intensity of gas pressure increase in the annulus of production wells operated by submersible pumps has been developed. Analytical dependence for calculating the time interval of gas accumulation in the annulus, during which the dynamic level decreases to the pump intake, is obtained. This value can be used to estimate the frequency of gas withdrawal from the annulus using compressors. It has been found that the rate of increase in annular gas pressure in time increases non-linearly with a rise in the gas-oil ratio and a decrease in water cut, and also linearly increases with a rise in liquid flow rate. Influence of the operating (gas-oil ratio) and technological (value of the gas pressure maintained in the annulus) factors on the flow rate of the suspended reciprocating compressor driven by the beam engine, designed for forced withdrawal and redirection of the annular gas into the flow line of the well is analyzed.

How to cite: Urazakov K.R., Belozerov V.V., Latypov B.M. Study of the dynamics for gas accumulation in the annulus of production wells // Journal of Mining Institute. 2021. Vol. 250 . p. 606-614. DOI: 10.31897/PMI.2021.4.14
Oil and gas
  • Date submitted
    2019-06-30
  • Date accepted
    2019-09-07
  • Date published
    2019-12-24

Development of Scada-model for trunk gas pipeline's compressor station

Article preview

Nowadays, at all levels of created automated control systems for technological processes, programmable technical means are used that require specific software within framework of necessary functional tasks. This software should include a set of software tools that communicate with technical devices and organize «human-machine interface» (HMI) in the form of application software for AWPs with assigned communication tasks for persons, responsible for management decision-making: operators, dispatchers, managers. However, hardware architecture is unique for each particular case, so it is necessary to refine or create a new control system. This is a rather laborious process. To simplify creation of such systems SCADA-systems are used. Article is devoted to development of SCADA-component for trunk gas pipeline's compressor workshop. Developed component allows tracking the characteristics of gas transportation process selected by operator. Development is based on «Windows» operating system and integrated environment TRACE MODE (SCADA/HMI).

How to cite: Ilyushin Y.V., Afanaseva O.V. Development of Scada-model for trunk gas pipeline’s compressor station // Journal of Mining Institute. 2019. Vol. 240 . p. 686-693. DOI: 10.31897/PMI.2019.6.686
Electromechanics and mechanical engineering
  • Date submitted
    2018-11-13
  • Date accepted
    2019-01-23
  • Date published
    2019-04-23

Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation

Article preview

The balance of electricity consumption a significant part is occupied by the production of compressed air at the mining enterprises. Many compressor stations of enterprises are equipped with automated parameter management systems that allow reliable, uninterrupted and safe operation of the compressor facilities. But the majority of automation systems at compressor stations do not perform the function of monitoring the energy efficiency indicators of the operation of a compressor station. The article discusses the issue of including compressed air flow sensors (flow meters) in an automated control system of a compressor station, which allows you to control the production of compressed air and the consumption of electrical energy for its production. Monitoring and recording of these parameters makes it possible, using microprocessor technology, to control one of the main indicators of energy efficiency – the specific energy consumption for producing one cubic meter of compressed air, determine how efficiently the compressor station works, and take appropriate measures to reduce specific energy consumption in time. . The use of additional functions of automated control and monitoring systems will allow the development and application of energy-saving measures aimed at improving the energy efficiency of the enterprise, which will lead to a reduction in the cost of finished products and increase their competitiveness

How to cite: Ugolnikov A.V., Makarov N.V. Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation // Journal of Mining Institute. 2019. Vol. 236 . p. 245-248. DOI: 10.31897/PMI.2019.2.245
Electromechanics and mechanical engineering
  • Date submitted
    2018-09-08
  • Date accepted
    2018-10-27
  • Date published
    2019-02-22

Special strategy of treatment of difficulty-profile conical screw surfaces of single-screw compressors working bodies

Article preview

The article deals with the problems arising during the shaping of complex profile tapered helical surfaces. These surfaces form the geometry of the working bodies of single-screw miniature compressors, which have great prospects for use in mobile miniature compressor plants, which is especially important for medical and space technology, robotics, oil and gas and mining industries. Due to the fact that the capabilities of existing CAD systems do not allow obtaining three-dimensional models of these surfaces, the problem of preparing a control program for a CNC machine arises, since the calculation of the tool path in CAM systems when processing complex surfaces is impossible without a three-dimensional surface model. To solve the problem, an automated programming system was developed that implements a formalized toolpath calculation in accordance with the proposed special processing strategy for conical helical surfaces. As the initial data for calculating the toolpath, the system needs information about the tool geometry and the helical surface in a parametric form, which makes it possible to abandon the construction of a three-dimensional surface model. The results of processing prototypes for the proposed strategy are given.

How to cite: Vasilev A.S., Goncharov A.A. Special strategy of treatment of difficulty-profile conical screw surfaces of single-screw compressors working bodies // Journal of Mining Institute. 2019. Vol. 235 . p. 60-64. DOI: 10.31897/PMI.2019.1.60
Problems in geodynamic safety in the exploration of solid deposits
  • Date submitted
    2009-10-26
  • Date accepted
    2009-12-27
  • Date published
    2010-09-22

Support of geodynamic safety in mining of the Khibini deposits

Article preview

The paper deals with the problems of geodynamics in mining of the Khibini deposits. Description is given to the complex of organizational-technical arrangements for provision of geodynamic safety at the Apatit Co and to principal trends of its development.

How to cite: Shaposhnikov Y.P., Zvonar A.Y., Mozhaev S.A., Akkuratov M.V. Support of geodynamic safety in mining of the Khibini deposits // Journal of Mining Institute. 2010. Vol. 188 . p. 104-108.
Problems in geodynamic safety in the exploration of solid deposits
  • Date submitted
    2009-10-14
  • Date accepted
    2009-12-11
  • Date published
    2010-09-22

Investigation of present-day stress-strain state of rock mass by the results of observations at geodynamic polygons

Article preview

The methods are suggested for treatment of the results of optical distance and levelling measurements at the underground geodynamic polygons involving in their calculation the tensors of additional stresses and deformations, component of rotation and specific energy of deformability. As an example, consideration is given to changes in time of movements, deformations and specific energy of deformability at one of geodynamic polygons of the Kola peninsular.

How to cite: Savchenko S.N., Kasparyan E.V., Smagina Y.G. Investigation of present-day stress-strain state of rock mass by the results of observations at geodynamic polygons // Journal of Mining Institute. 2010. Vol. 188 . p. 112-116.
Economical aspects in the developments оf fuel & energy complex
  • Date submitted
    2008-11-02
  • Date accepted
    2009-01-05
  • Date published
    2009-12-11

Assessment the effectiveness of energy consumption in the enterprises of the main transport of gas

Article preview

This study proposed a new comprehensive approach to assessing energy efficiency in the enterprises of the main transport of gas, which allows you to explore in detail the consumption of energy resources of each equipment, consumption of resources in technological operations and the creation of favorable conditions, to assess the state of accounting systems and the organization works to improve the efficiency use of energy.

How to cite: Konoplev T.F. Assessment the effectiveness of energy consumption in the enterprises of the main transport of gas // Journal of Mining Institute. 2009. Vol. 184 . p. 138-143.