-
Date submitted2024-01-31
-
Date accepted2024-05-02
-
Date published2024-12-25
Evaluation of the effectiveness of water dust-suppressing emulsions based on acrylic and alkyd polymers
Currently, the use of special dust-suppressing reagents is promising to reduce the level of dust in the vicinity and on the territories of pits, mining and processing plants and other facilities with a high content of fine dust. The analysis of ways to reduce the dust-forming ability of inorganic dispersions with a high degree of dusting is carried out. Due to the lack of regulatory and technical documentation devoted to the standardization of quality control methods for dust-suppressing compounds, it becomes necessary to analyze existing parameters and methods for their determination in order to develop mandatory methods for controlling the properties of dust-suppressing compounds, films formed by them and consolidated systems. The study is devoted to substantiating the necessary methods for assessing the dust-forming ability of inorganic dispersions after treatment with various dust suppressants and evaluating their effectiveness. The parameters are considered and methods for quantifying the determination of the quality of the consolidated layer of dust samples using different dust-suppressing compositions are described. As a result of the analysis of the set of parameter values, it was found that the most resistant to the effects of negative factors due to the formation of a denser and more durable polymer matrix mesh are dusting surface samples treated with an emulsion of alkyd glypthalic resin on a water basis with a high agglomerating effect on particles of inorganic dispersion and the formation of a consolidated layer with a wetting angle of 92.5° and a compressive strength 0.56 MPa.
-
Date submitted2021-10-18
-
Date accepted2022-01-24
-
Date published2022-04-29
Development of a hydrocarbon completion system for wells with low bottomhole temperatures for conditions of oil and gas fields in Eastern Siberia
The paper presents the results of investigations on the influence of low bottomhole temperatures in the intervals of productive formations on the technological properties of solutions used for drilling and completion of wells in order to determine the possibility of increasing gas recovery coefficient at the field of the “Sila Sibiri” gas pipeline. The analysis of technological measures determining the quality of the productive horizon drilling-in was carried out. It was found out that the dispersion of bridging agent in the composition of the hydrocarbon-based drilling mud selected from the existing methods does not have significant influence on the change in the depth of filtrate penetration into the formation in conditions of low bottomhole temperatures. The main reason for the decrease in the near-bottomhole zone permeability was found out – the increase in plastic viscosity of the dispersion medium of the hydrocarbon-based drilling mud under the influence of low bottomhole temperatures. A destructor solution for efficient wellbore cleaning from hydrocarbon-based solution components in conditions of low bottomhole temperatures was developed. The paper presents the results of laboratory investigations of hydrocarbon-based drilling mud and the developed destructor solution, as well as its pilot field tests. The mechanism of interaction between the destructor solution and the filter cake of the hydrocarbon-based drilling mud ensuring the reduction of the skin factor in the conditions of the geological and hydrodynamic structure of Botuobinsky, Khamakinsky and Talakhsky horizons of the Chayandinskoye oil and gas condensate field has been scientifically substantiated.
-
Date submitted2021-05-19
-
Date accepted2022-04-07
-
Date published2022-04-29
On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs
The paper analyses features of the species composition and diversity of biotic communities living within the ferromanganese nodule fields (the Clarion-Clipperton field), cobalt-manganese crusts (the Magellan Seamounts) and deep-sea polymetallic sulphides (the Ashadze-1, Ashadze-2, Logatchev and Krasnov fields) in the Russian exploration areas of the Pacific and Atlantic Oceans. Prospects of mining solid minerals of the world’s oceans with the least possible damage to the marine ecosystems are considered that cover formation of the sediment plumes and roiling of significant volumes of water as a result of collecting the minerals as well as conservation of the hydrothermal fauna and microbiota, including in the impact zone of high temperature hydrothermal vents. Different concepts and layout options for deep-water mining complexes (the Indian and Japanese concepts as well as those of the Nautilus Minerals and Saint Petersburg Mining University) are examined with respect to their operational efficiency. The main types of mechanisms that are part of the complexes are identified and assessed based on the defined priorities that include the ecological aspect, i.e. the impact on the seabed environment; manufacturing and operating costs; and specific energy consumption, i.e. the technical and economic indicators. The presented morphological analysis gave grounds to justify the layout of a deep-sea minerals collecting unit, i.e. a device with suction chambers and a grip arm walking gear, selected based on the environmental key priority. Pilot experimental studies of physical and mechanical properties of cobalt-manganese crust samples were performed through application of bilateral axial force using spherical balls (indenters) and producing a rock strength passport to assess further results of the experimental studies. Experimental destructive tests of the cobalt-manganese crust by impact and cutting were carried out to determine the impact load and axial cutting force required for implementation of the collecting system that uses a clamshell-type effector with a built-in impactor.
-
Date submitted2021-03-18
-
Date accepted2021-09-10
-
Date published2021-12-16
Development of blocking compositions with a bridging agent for oil well killing in conditions of abnormally low formation pressure and carbonate reservoir rocks
- Authors:
- Dmitrii V. Mardashov
Production well killing before workover operations in late-stage oil and gas-condensate fields can be complicated by abnormally low formation pressure, carbonate type of reservoir rocks, and high gas-oil ratio. These complications lead to the intensive absorption of technological fluids by the formation and gas ingresses, which, in its turn, increases the time of killing wells and putting them on production, reduction of productivity, and additional costs. Therefore, it is crucial to develop a high-performance well-killing composition that would allow improving the efficiency of killing wells in complicated geological, physical, and technological conditions at the expense of reliable overlapping of the perforation interval (or open wellbore) to prevent gas intakes and gas outflow from the formation. To develop blocking compounds, a set of laboratory tests has been carried out, including physical and chemical (determination of density, viscosity, thermal stability, sedimentation stability, etc.) and research of blocking and filtration properties of compositions during simulation of a fractured reservoir. In the course of laboratory tests, the choice of fractional composition and polymer filler concentration was substantiated in the blocking emulsion and polymer compositions to increase the efficiency of their application under the complicated conditions of killing oil wells. As a result of laboratory research and field tests, the emulsion and polymer blocking compositions containing bridging agent (microcalcite) were developed, which increase the oil well killing efficiency by preventing the absorption of technological fluids in the formations and, as a result, preserving its productivity.
-
Date submitted2010-07-16
-
Date accepted2010-09-11
-
Date published2011-03-21
Parameters of high viscosity oils transportation in the form of emulsion research in order to its optimization
- Authors:
- V. I. Aleksandrov
- A. P. Khrabrov
The article deals with the physical model of high viscosity oil-in-water emulsion flow, which concern both structural and plastic properties of viscoplastic liquids. On the basis of theoretical study, which was proved with experimental data, computation algorithm of high viscosity oil in emulsion state pipeline transportation was developed.
-
Date submitted2009-08-27
-
Date accepted2009-10-25
-
Date published2010-02-01
Regularities of change of water-repellent properties of the nanostructured metal powders on the base of aluminium
Regularities of change of water-repellent properties of metal powders on the basis of aluminium depending on the program of nano-structural surface modifying are studyed. The rows of increase of water-repellent properties of modified aluminium on the base of coarse-dispersed and high-dispersed (PAP-2) powders are obtained. Several specimens excelling initial hydrohobic PAP-2 inits water-repellent capacity are found out. The research uses the methods of XP-, EDX- spectroscopy and gravimetry.