-
Date submitted2024-04-16
-
Date accepted2024-06-03
-
Date published2024-07-04
Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems
- Authors:
- Ivan P. Sverchkov
- Vladimir G. Povarov
The article describes an X-ray fluorescence method for quantitative analysis of sulfate and total sulfur in bottom sediments of watercourses and reservoirs located in the area of industrial enterprises impact. The quantitative determination of sulfur forms was carried out by analyzing the characteristic curves SKα1,2 and SKβ1,3, as well as the satellite line SKβ′ on X-ray emission spectra measured by an X-ray fluorescence spectrometer with wavelength dispersion. The study shows that these characteristic curves allow not only to determine the predominant form of sulfur, but also to separately conduct quantitative analyses of sulfates and total sulfur after fitting peaks and to separately analyze overlapping spectral lines. The results of quantitative analysis of the chemical state of sulfur by the proposed X-ray fluorescence method were compared with the results of inductively coupled plasma atomic emission spectroscopy and elemental analysis, as well as certified standard samples of soils and sediments. The results are in good agreement with each other.
-
Date submitted2020-06-02
-
Date accepted2021-05-21
-
Date published2021-09-20
Analysis of technological schemes for creating a geodetic control at the industrial site
The article highlights the issues of creating with the necessary accuracy a planned control on the industrial site of the engineering structures under construction using satellite technologies and total stations. Depending on the design features of the engineering structures under construction, as well as the technological scheme for the installation of building constructions and industrial equipment, various schemes for creating such control are considered, based on the application of the inverse linear-angular notch. Errors in the source data are one of the main errors that affect the accuracy of geodetic constructions, including the solution of the inverse linear-angular notch. When creating a geodetic network in several stages, the errors of the initial data of the first stage affect the values of the root-mean-square errors (RMS) of determining the position of the second stage points, the errors of which affect the value of the RMS of the position of the third stage points, etc. The reason for their occurrence is the errors of geodetic measurements that occur at each stage of control creating, as well as the stability violation of the points during the production of excavation, construction and installation works. When determining the coordinates of a separate project point at the stage of its removal in-situ by a total station, the entire network is not equalized in the vast majority of cases, and the coordinates of the starting points to which the total station is oriented are considered error-free. As a result, the RMS determination of the points coordinates of the control network or the removal of the design points of the elements of building structures and equipment will also be considered satisfying the requirements, i.e. the measurement accuracy will be artificially overestimated and will not correspond to the actual one obtained. This is due to the fact that the accumulation of errors in the initial data is not taken into account when the number of steps (stages) of control creating increases. The purpose of this work is to analyze the influence of measurement errors and initial data when creating a geodetic control on an industrial site by several stages of its construction based on inverse linear-angular notches and a priori estimation of the accuracy of the determined points position.
-
Date submitted2020-06-15
-
Date accepted2020-06-15
-
Date published2020-06-30
Multi-terminal dc grid overall control with modular multilevel converters
This paper presents a control philosophy for multiterminal DC grids, which are embedded in the main AC grid. DC transmission lines maintain higher power flow at longer distances compared with AC lines. The voltage losses are also much lower. DC power transmission is good option for Russian north. Arctic seashore regions of Russia don't have well developed electrical infrastructure therefore power line lengths are significant there. Considering above it is possible to use DC grids for supply mining enterprises in Arctic regions (offshore drilling platforms for example). Three different control layers are presented in an hierarchical way: local, primary and secondary. This whole control strategy is verified in a scaled three-nodes DC grid. In one of these nodes, a modular multilevel converter (MMC) is implemented (five sub-modules per arm). A novel model-based optimization method to control AC and circulating currents is discussed. In the remaining nodes, three-level voltage source converters (VSC) are installed. For their local controllers, a new variant for classical PI controllers are used, which allow to adapt the values of the PI parameters with respect to the measured variables. Concerning the primary control, droop control technique has been chosen. Regarding secondary level, a new power flow technique is suggested. Unbalance conditions are also verified in order to show the robustness of the whole control strategy.
-
Date submitted2016-11-18
-
Date accepted2016-12-28
-
Date published2017-04-14
Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse
The paper describes theory, method and first experimental results of research on the interaction between electromagnetic waves of extremely low and ultra low frequency (0.1-200 Hz), the Earth crust and ionosphere in the field of two mutually orthogonal industrial power lines, 109 and 120 km long, in the course of FENICS experiment (Fennoscandian Electrical conductivity from Natural and Induction Control Source soundings). The main focus was on the observation results along the line of Karelia-Kola geotraverse over a distance of 700 km from the source. High horizontal homogeneity of geoelectrical lithosphere section has been detected in the eastern part of the Baltic shield at depth range from 10-15 to 50-70 km. Parameters of «regular» lithosphere section have been specified to the depth of 60-70 km. As a result of inverse problem solution for the western part of Karelia and Central Finland, a zone of decreased transverse resistivity has been detected at the depth of 50-60 km, corresponding to the area, detected by seismic methods, where Moho boundary reaches the same depth.
-
Date submitted2009-07-07
-
Date accepted2009-09-04
-
Date published2010-04-22
Application of geodynamic polygons for monitoring of ground deformations while exploitation of gas and oil fields
The main aims and problems of geodynamical monitoring of oil and gas fields are considered. It’s proved that monitoring of deformations of long-term oil and gas fields becomes really actual to secure stable oil and gas production and transporting. Basic criteria of geodynamical polygon creation and general requirements for gas and oil fields monitoring are adduced in this work. For practical creation of geodynamical polygons one indicated equipment, methods and content of work with phases.