-
Date submitted2023-07-05
-
Date accepted2024-06-03
-
Date published2024-12-25
Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores
- Authors:
- Bayan R. Rakishev
The paper presents mining-technological substantiation of complete extraction of conditioned ores from complex-structured blocks of benches by mixing a layer of substandard ores of certain sizes. The relevance of the work consists in the development of innovative methods of establishing the parameters of the substandard layer of ores to be added to the conditioned ores. The main problem is to ensure complete extraction of useful components into concentrate from shipped ore with acceptable deviations from the required ones. A new typification of complex-structured ore blocks of the bench has been carried out. Analytical dependences of mining and geological characteristics of complex-structured ore blocks were obtained. Theoretical dependences for determining the main indicators of mineral processing are derived. Analytical dependences for determination of the content of useful component in shipped ore α' – mixture of conditioned ore with the content of useful component α and admixed layer of substandard ore with the content of useful component α'' are offered. For the first time in mining science, a new approach of complete extraction of conditioned ores from complex-structured blocks of benches by grabbing a certain part of substandard ores during excavation, increasing the volume of extracted ore and expanding the extraction of useful components in the concentrate has been substantiated. The increment of useful components can reach 10-15 % of the total volume of extraction, which allows predicting a significant increase in the completeness of mineral extraction from the Earth's interior.
-
Date submitted2023-08-14
-
Date accepted2023-12-27
-
Date published2024-12-25
Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons
In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.
-
Date submitted2022-05-13
-
Date accepted2022-09-24
-
Date published2022-11-03
Rapid detection of coal ash based on machine learning and X-ray fluorescence
Real-time testing of coal ash plays a vital role in the chemical, power generation, metallurgical, and coal separation sectors. The rapid online testing of coal ash using radiation measurement as the mainstream technology has problems such as strict coal sample requirements, poor radiation safety, low accuracy, and complicated equipment replacement. In this study, an intelligent detection technique based on feed-forward neural networks and improved particle swarm optimization (IPSO-FNN) is proposed to predict coal quality ash content in a fast, accurate, safe,and convenient manner. The data set was obtained by testing the elemental content of 198 coal samples with X-ray fluorescence (XRF). The types of input elements for machine learning (Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, P) were determined by combining the X-ray photoelectron spectroscopy (XPS) data with the change in the physical phase of each element in the coal samples during combustion. The mean squared error and coefficient of determination were chosen as the performance measures for the model. The results show that the IPSO algorithm is useful in adjusting the optimal number of nodes in the hidden layer. The IPSO-FNN model has strong prediction ability and good accuracy in coal ash prediction. The effect of the input element content of the IPSO-FNN model on the ash content was investigated, and it was found that the potassium content was the most significant factor affecting the ash content. This study is essential for real-time online, accurate, and fast prediction of coal ash.
-
Date submitted2021-05-28
-
Date accepted2021-11-30
-
Date published2021-12-27
Features of grouping low-producing oil deposits in carbonate reservoirs for the rational use of resources within the Ural-Volga region
A methodology has been developed and a procedure for selecting homogeneous groups has been implemented using a set of parameters characterizing the properties of formation fluids, layering conditions, geological and physical properties of formations at different levels of the hierarchy. An algorithm for identifying deposits for monitoring and justifying measures to improve the efficiency of development management is proposed. A justification for the selection of associative groups of long-term developed objects using the parameters of geological heterogeneity according to different tectonic-stratigraphic elements is presented. To reduce the degree of uncertainty in the evaluation of objects by the degree and nature of geological heterogeneity, the parameters reflecting the degree of uncertainty of the system using complex characteristics are proposed. For different deposit associations, a different influence of the features of the object structure on the degree of their division has been established. In the process of deposit drilling, as additional information about development objects is obtained, it is necessary to specify the nature of the distinguished groups of objects first of all based on the use of characteristics of geological heterogeneity. Comparison of various grouping options shows the need to take into account the geological heterogeneity of objects during their drilling. The identification of groups of objects using a limited number of parameters is approximate, but at the stage of drafting the first design documents, it is possible to solve certain tasks aimed at determining the strategy for the development of deposits
-
Date submitted2021-01-21
-
Date accepted2021-02-24
-
Date published2021-04-26
Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district)
- Authors:
- Regina E. Dashko
- Ivan S. Romanov
The underground space of the Kupol deposit is analyzed as a multicomponent system – rocks, underground water, microbiota, gases (including the mine atmosphere) and supporting structures – metal support and shotcrete (as an additional type of barring) and also stowing materials. The complex of host rocks is highly disintegrated due to active tectonic and volcanic activity in the Cretaceous period. The thickness of sub-permafrost reaches 250-300 m. In 2014, they were found to contain cryopegs with abnormal mineralization and pH, which led to the destruction of metal supports and the caving formation. The underground waters of the sub-permafrost aquifer are chemically chloride-sulfate sodium-calcium with a mineralization of 3-5 g/dm 3 . According to microbiological analysis, they contain anaerobic and aerobic forms of microorganisms, including micromycetes, bacteria and actinomycetes. The activity of microorganisms is accompanied by the generation of hydrogen sulfide and carbon dioxide. The main types of corrosion – chemical (sulfate and carbon dioxide), electrochemical and biocorrosion are considered. The most hazardous is the biocorrosion associated with the active functioning of the microbiota. Forecasting and systematization of mining and geological processes are carried out taking into account the presence of two zones in depth – sub-permafrost and below the bottom of the sub-permafrost, where mining operations are currently underdone. The importance of assessing the underground space as a multicomponent environment in predicting mining and geological processes is shown, which can serve as the basis for creating and developing specialized monitoring complex in difficult engineering and geological conditions of the deposit under consideration.
-
Date submitted2019-03-19
-
Date accepted2019-05-22
-
Date published2019-08-23
Engineering of Complex Structure Apatite Deposits and Excavating-Sorting Equipment for Its Implementation
- Authors:
- A. Yu. Cheban
Development of Oshurkovskoye apatite deposit with conventional methods, using drilling, blasting and then processing of extracted ore by means of flotation and construction of hydraulic structures to store wet tailings, turns out to be impossible, as the reservoir is located in a special ecological zone of Transbaikal; moreover, the deposit has a complex geological structure and a low grade of valuable component in the orebody. Refinement of the mineral product occurs primarily during its processing; however, ore grade can already be controlled in the process of its extraction. Advancement of technical facilities opens up new opportunities of selective mining for complex structure deposits. The purpose of this research is to create a technology, which will upgrade the quality of mineral substance, fed to the processing plant, directly at the extraction stage. The paper proposes a technological development scheme for Oshurkovskoye deposit using an excavating-sorting complex containing a transport-sorting facility and a measuring unit for estimation of the grade in a milled rock mass; it allows to separate a rich fine fraction of substandard ore, which under conventional mining practices would have been sent to the stockpile of temporarily substandard ore. Separation of fine fractions of apatite ore in the transport-sorting facility allows to reduce dusting during production and cuts the losses of valuable component, associated with aeration of fine fractions during loading and transportation of the rock mass. Positioning of oversize material in the open trench with its subsequent selective extraction by the loading machine facilitates non-stop operation of the mining-sorting equipment, which provides an increase in the productivity of mining operations.
-
Date submitted2019-03-24
-
Date accepted2019-05-13
-
Date published2019-08-23
Calculation of Oil-saturated Sand Soils’ Heat Conductivity
- Authors:
- J. Sobota
- V. I. Malarev
- A. V. Kopteva
Nowadays, there are significant heavy high-viscosity oil reserves in the Russian Federation with oil recovery coefficient not higher than 0.25-0.29 even with applying modern and efficient methods of oil fields development. Thermal methods are the most promising out of the existing ways of development, main disadvantage of which is large material costs, leading to the significant rise in the cost of extracted oil. Thus, creating more efficient thermal methods and improving the existing ones, is the task of great importance in oil production. One of the promising trends in enhancing thermal methods of oil recovery is the development of bottomhole electric steam generators. Compared to the traditional methods of thermal-steam formation treatment, which involve steam injection from surface, well electrothermal devices can reduce energy losses and improve the quality of steam injected into the formation. For successful and efficient organization of oil production and rational development of high-viscosity oil fields using well electrothermal equipment, it is necessary to take into account the pattern of heat propagation, both in the reservoir and in the surrounding space, including the top and bottom. One of the main values characterizing this process is the heat conductivity λ of oil-bearing rocks. The article describes composition of typical oil-saturated sand soils, presents studies of heat and mass transfer in oil-saturated soils, reveals the effect of various parameters on the heat conductivity of a heterogeneous system, proposes a method for calculating the heat conductivity of oil-bearing soils by sequential reduction of a multicomponent system to a two-component system and proves the validity of the proposed approach by comparing acquired calculated dependencies and experimental data.
-
Date submitted2016-09-23
-
Date accepted2016-11-18
-
Date published2017-02-22
Principles of assessment and management approaches to innovation potential of coal industry enterprises
- Authors:
- A. V. Kozlov
- A. B. Teslya
- Sya Chzhan
This paper examines problems related to forming a complex of indicators to assess innovation potential of an industrial enterprise, on the example of coal industry enterprises, and an integral indicator of innovation potential, used for comparative analysis of the state of affairs in the industry. Analysis of different approaches to defining the term «innovation potential» for industrial enterprises has been carried out; resource-based, resultative, integrative and capacitive approaches have been highlighted, the latter one based on assessment of enterprise capacities. A conclusion has been made regarding advantages of integrative approach. Research has been made on the role of industry in the fuel and power sector of China and dynamics of industry and enterprise development in Shanxi province. Basing on suggested approach a system of assessment principles has been formulated, taking into account specific features of coal industry enterprises. Complex of indicators to assess innovation potential has been developed using expert evaluation method. An expertise procedure is proposed to assess competence of experts; results obtained from the expertise are presented. Proposed complex of indicators includes 23 parameters combined into three groups. Testing of proposed complex of indicators has been carried out on the example of coal industry in Shanxi province (China). Application of all stated principles has been proved in the process of indicator selection, assessment and formulation of recommendations for subsequent innovation potential management of coal industry enterprises. Proposed approach to forming a complex of indicators of innovation potential for industry enterprises permits to link together the logic of innovation potential definition, formation of the system of its principles, selection of the indicators complex for assessment and subsequent innovation potential management of the enterprise.
-
Date submitted2015-10-11
-
Date accepted2015-12-13
-
Date published2016-08-22
The specifics of operating minor deposits (as given by the examples of gas condensate deposits of the Northern Caucasus)
- Authors:
- R. A. Gasumov
One of the most important directions in upgrading well productivity in the process of mining hydrocarbons consists in fighting with salt formation and salt deposition. Solving that problem becomes especially actual when operating deposits that are in their final stage of exploitation in complex mining and geological conditions accompanied by deposition of salts in the well foot area of oil bed and their sedimentation on the sub-surface and surface equipment. It provokes a drop in well productivity and results in off-schedule repair works. Specifics are considered of exploiting minor gas condensate deposits of the Northern Caucasus that are operated under complicated mining and geological conditions of anomalously high bed pressures, high temperatures, strong depressions on the beds and inflow of mineralized water from water saturated seams. Processes are studied of salt deposition from heavy hydrocarbons in the well foot and the bed area surrounding it. Water sample analyses data from different wells have demonstrated that the main salts carrier is the associated water, and the principal sedimenting agents are corrosion products, as confirmed by the results of microscopic studies. The dynamics is presented of salt deposition in the “well foot – wellhead – separator” system retrieved from the results of studies of reaction products in the well foot zone of oil bed. It is demonstrated that the efficiency of struggling with salt deposition in the course of mining hydrocarbons depends on comprehensive approach to the problem, the principal thrust lying with prevention of such deposition. Possible ways are considered to prevent precipitation of ferric compounds in the course of operating gas condensate wells, a way is suggested to intensify gas inflow.
-
Date submitted2015-07-16
-
Date accepted2015-09-28
-
Date published2016-02-24
Examination of the raw materials and the products of the combustible shales processing
- Authors:
- N. K. Kondrasheva
- S. N. Saltykova
The reserves of combustible slates of Russia in shale oil and gas equivalent are more than the reserves of oil and natural gas. The formation of a large volume of ash is a major problem connected to the processing and the usage of the combustible slates. It is possible to look at this problem from a different angle of vision if a mineral part of slates is considered as a complex organo-mineral raw material where a mineral substance of the slates is the same raw material as the organic one. For this purpose, it is required to study in detail the physicochemical characteristics of the combustible slates and the behavior of the organic and the mineral parts of the slates during the heat treatment. This research focuses on the phase composition of Leningrad fuel shale and its changes on pyrolysis. They were studying the phase composition, the gas phase outlet, pyrolysis mass balance of combustible slates in the nitrogen atmosphere in the temperature range of 200-1000 °С, the porosity changes of combustible slate in the nitrogen atmosphere in the temperature range of 25-900 °С. It is determined that the main minerals of combustible slates are calcite (28 %), quartz (25 %), illite (17 %), and microcline (11 %). The temperature dependence of the shale porosity is studied in a nitrogen atmosphere and in air. The porosity changes in four stages: (I) 25-200 °C; (II) 200-400 °C; (III) 400-600 °C; (IV) 600-900 °C. The mass balance pyrolysis of combustible slates in a PTK_1.2_40 tube furnace is made up, in the nitrogen atmosphere of 200, 400, 600, 800 and 1000 °C.
-
Date submitted2009-10-29
-
Date accepted2009-12-26
-
Date published2010-09-22
Control system of rock pressure at the «Antey» deposit
- Authors:
- B. A. Prosekin
- E. A. Ilin
The paper deals with the geomechanical monitoring system of the Antey deposits of uranium ores. Characteristics of the methods and means for rock pressure control are given.
-
Date submitted2009-10-14
-
Date accepted2009-12-11
-
Date published2010-09-22
Investigation of present-day stress-strain state of rock mass by the results of observations at geodynamic polygons
- Authors:
- S. N. Savchenko
- E. V. Kasparyan
- Yu. G. Smagina
The methods are suggested for treatment of the results of optical distance and levelling measurements at the underground geodynamic polygons involving in their calculation the tensors of additional stresses and deformations, component of rotation and specific energy of deformability. As an example, consideration is given to changes in time of movements, deformations and specific energy of deformability at one of geodynamic polygons of the Kola peninsular.
-
Date submitted2009-08-23
-
Date accepted2009-10-05
-
Date published2010-02-01
Developing a rational technology of utilization оf bio and oil slimes of the Kinef Ltd by an extraction оf useful components
- Authors:
- K. A. Moiseeva
The paper deal with the problem of developing a rational technology of slime and silt recycling for company «KINEF», which nowadays is one of the leading companies in Russia in it area. Therefore the question of soil-waste utilization is one of the major issues to adress for this organisation. During the reaserch samples of soil waste were taken and analyised, which helped to work out a complite technology of recycling. Special attention is paid to the necessity of extraction of the useful components.
-
Date submitted2008-10-01
-
Date accepted2008-12-15
-
Date published2009-12-11
Possibilities for localization of zones of hydrocarbon accumulation by application of АМТ-data component analysis
Principal component method was used for qualitative interpretation of a matrix of magnetotelluric parameters. Localization of hydrocarbon congregation was the purpose of the investigations. Model of subvertical diffusion of hydrocarbon from reservoir was used as physical basis of oil and gas prospecting. The hydrocarbon роо l generates continuous spatial halation of hydrocarbon above the reservoir. Due to reducing reactions in the area the volumetric pyritization of rocks took place.