Submit an Article
Become a reviewer

Search articles for by keywords:
калийно-магниевые соли

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-04-19
  • Date accepted
    2022-05-25
  • Date published
    2022-07-13

Development of the technology of stowing the developed space during mining

Article preview

An analysis of the world experience in the development of potash deposits shows that the main problems arising during their development are a high level of mineral losses, an increased risk of flooding of mine workings as a result of water-proof layer discontinuance and the development of emergency water inflows in the mined-out spaces. Reduction of potash ore losses can be achieved by using a long-pillar mining system, but this method is limited by the peculiarities of the geological structure of the potash deposits and the need to preserve the continuity of the water-proof layer during its underworking. The safety of underworking of the water-proof layer can be improved by using the stowing of the developed longwall space. However, the question of the influence of the stowing on the height of the zone of water supply cracks development remains little-studied. The world experience of stowing the developed spaces in the development of layers with long pillars is analyzed and the technology of placing the stowing masses, which can solve these problems, is proposed. The considered technology and the proposed solutions are supported by laboratory tests of stowing materials and mathematical modeling of deformation zones in the overlying rocks.

How to cite: Kovalskii E.R., Gromtsev K.V. Development of the technology of stowing the developed space during mining // Journal of Mining Institute. 2022. Vol. 254 . p. 202-209. DOI: 10.31897/PMI.2022.36
Geology
  • Date submitted
    2021-03-16
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration

Article preview

Advancement in the production of potassium fertilizers is an important strategic task of Russian agricultural industry. Given annually growing production rates, the reserves of discovered potassium-magnesium salt deposits are noticeably decreasing, which creates the need to ensure stable replenishment of the resource base through both the discovery of new deposits and the exploitation of deep-lying production horizons of the deposits that are already under development. In most cases, deposits of potassium-magnesium salts are developed by underground mining. The main problem for any salt deposit is water. Dry salt workings do not require any additional reinforcement and can easily withstand rock pressure, but with an inflow of water they begin to collapse intensively – hence, special attention is paid to mine waterproofing. Determination of spatial location, physical and mechanical properties of the aquifer and water-blocking stratum in the geological section represent an important stage in the exploration of a salt deposit. The results of these studies allow to validate an optimal system of deposit development that will minimize environmental and economic risks. On the territory of Russia, there is a deposit of potassium-magnesium salts with a unique geological structure – its production horizon lies at a considerable depth and is capped by a regional aquifer, which imposes significant limitations on the development process. To estimate parameters of the studied object, we analyzed the data from CDP seismic reflection survey and a suite of methods of radioactive and acoustic well logging, supplemented with high-frequency induction logging isoparametric sounding (VIKIZ) data. As a result of performed analysis, we identified location of the water-bearing stratum, estimated average thickness of the aquifers and possible water-blocking strata. Based on research results, we proposed methods for increasing operational reliability of the main shaft in the designed mine that will minimize the risks of water breakthrough into the mine shaft.

How to cite: Danileva N.A., Danilev S.M., Bolshakova N.V. Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration // Journal of Mining Institute. 2021. Vol. 250 . p. 501-511. DOI: 10.31897/PMI.2021.4.3
Mining
  • Date submitted
    2014-11-07
  • Date accepted
    2015-01-07
  • Date published
    2015-10-26

The concept of reducing the risks of potash mines flooding caused by groundwater inrush into excavations

Article preview

Results of the analysis of factors influencing the probability of accidental groundwater inrush into mine workings of salt (potash, potassium and magnesium) mines are given in the article. The cases of the potash mine flooding that occurred in different countries with developed mining industry are given. It is shown that at the present technical and scientific level of solving this problem the unexpected groundwater inrush in potash mines usually results in the shutdown of the enterprise and negative ecological consequences. It is pointed out that the underground waters flow into the mines through water-conducting fractures of either natural or technogenic origin which location and influence on a mine was almost impossible to predict at the design stage under existing regulations. The concept of reducing the risks of potash mine flooding caused by underground waters in-rush is formulated. Administrative and technical measures which allow reducing the risks of potash mine flooding caused by groundwater inrush into the excavations are considered.

How to cite: Zubov V.P., Smychnik A.D. The concept of reducing the risks of potash mines flooding caused by groundwater inrush into excavations // Journal of Mining Institute. 2015. Vol. 215 . p. 29-37.
Oil and gas
  • Date submitted
    2014-07-21
  • Date accepted
    2014-09-19
  • Date published
    2014-12-22

Preliminary preparation of oil for primary processing

Article preview

Oil supplied for primary processing always undergoes preliminary preparation, the purpose of which is to eliminate the harmful effect of water and salt contained in the oil. It is thought that corrosion of the equipment is connected mainly with chlorides of magnesium and calcium, which are subjected to hydrolysis with the formation of hydrochloric acid. Under the influence of hydrochloric acid the destruction (corrosion) of metal equipment at technological plants occurs (especially refrigerating-condensing and heatexchange equipment, furnaces of rectification units etc.). The authors of the article, on the basis of thermodynamic calculations, provide their point of view on this process and give a methodology by which the process of preliminary oil dehydration and desalting can be controlled. The thermodynamic calculations executed for standard conditions on the basis of refer-enced data confirm a high probability of chemical interaction of iron with hydrogen ions, hy-drogen sulphide and especially with carbonic acid. This testifies to high activity of the carbon dioxide dissolved in water and the impossibility of hydrolysis of ions of magnesium, calcium and iron. The calculations show that only the hydrolysis of magnesium chloride is possible tak-ing into account the ionic composition of the water phase in the oil. It should be noted that the presence of ions of chlorine shifts the iron potential in a nega-tive direction and increases the speed of corrosion of petrochemical equipment. The solution of this problem is in the development of modern methods of crude oil dehydration and desalting. It is also, however, in an intensification of the processes of mixing water-oil emulsions with wash-ing water by using various physical fields (for example, ultrasound) and creating new effective mixing devices on the basis of them.

How to cite: Kondrasheva N.K., Dubovikov O.A., Ivanov I.I., Zyryanova O.V. Preliminary preparation of oil for primary processing // Journal of Mining Institute. 2014. Vol. 210 . p. 21-29.
Problems in conservation of resources? mine surveying and wise erth's interior utilization
  • Date submitted
    2009-07-12
  • Date accepted
    2009-09-08
  • Date published
    2010-04-22

Account and movement of reserves in the information system of Silvinit co.

Article preview

At ore mines of the Silvinit Co. for accounting and movement of reserves are developed and used special tools, using GIS within the information system. Their use allows to automate accounting and monitoring of status and movement of stocks, including the formation of the reporting tables.

How to cite: Kataev A.V., Kutovoi S.N., Efimov E.M., Gilev M.V. Account and movement of reserves in the information system of Silvinit co. // Journal of Mining Institute. 2010. Vol. 185 . p. 279-284.