Submit an Article
Become a reviewer
Vol 276 Iss. 2
Pages:
89-106
In press

Conditions of chloride crystallization during well-based exploitation of saturated lithium-bearing brines in the southern part of the Siberian Platform

Authors:
Anastasiya V. Sergeeva1
Alexey V. Kiryukhin2
Andrey G. Vakhromeev3
Sergey B. Korotkov4
Mariya A. Danilova5
Elena V. Kartasheva6
Anna A. Kuzmina7
Mariya A. Nazarova8
About authors
  • 1 — Ph.D. Senior Researcher Institute of Volcanology and Seismology, Far Eastern Branch of the RAS ▪ Orcid
  • 2 — Ph.D., Dr.Sci. Chief Researcher Institute of Volcanology and Seismology, Far Eastern Branch of the RAS ▪ Orcid ▪ Elibrary ▪ Scopus
  • 3 — Ph.D., Dr.Sci. Head of Laboratory Institute of the Earth’s Crust, Siberian Branch of the RAS ▪ Orcid ▪ Elibrary
  • 4 — Ph.D. Head of Department Gazprom Invest LLC ▪ Orcid ▪ Elibrary
  • 5 — Senior Researcher RN Krasnoyarsk NIPIneft LLC ▪ Orcid ▪ Elibrary
  • 6 — Head of Analytical Centre Institute of Volcanology and Seismology, Far Eastern Branch of the RAS ▪ Orcid ▪ Elibrary
  • 7 — Junior Researcher Institute of Volcanology and Seismology, Far Eastern Branch of the RAS ▪ Orcid ▪ Elibrary
  • 8 — Junior Researcher Institute of Volcanology and Seismology, Far Eastern Branch of the RAS ▪ Orcid ▪ Elibrary
Date submitted:
2024-12-13
Date accepted:
2025-07-16
Online publication date:
2025-12-01

Abstract

We examine crystallization conditions for saturated brines of calcium, potassium, and magnesium chlorides from the Angara‑Lena artesian basin, Siberian Platform. The study focuses on temperatures matching actual thermal conditions in wells of the “Lithium” site at the Kovykta gas‑condensate field. This critical type of lithium‑bearing raw material is classified as hard-to-recover reserves. In most wells (depths to 2.2 km), rock temperatures in the upper geological section remain below 20 °C. During well operation, various salts precipitate from saturated magnesium-calcium chloride brines within the production line. This leads to rapid wellbore clogging and eventual production shutdown. Thermodynamic analysis of phase diagrams reveals that crystallization yields antarcticite CaCl2·6H2O, tachhydrite Mg2CaCl6·12H2O, minor amounts of carnallite KMgCl3·6H2O, bischofite MgCl2·6H2O, and several other chlorides, depending on temperature. At temperatures above 55 °C, salt precipitation becomes negligible. Thermohydrodynamic simulations of a single flowing well under hydrogeological conditions similar to those at the Kovykta area (southern Siberian Platform) demonstrate the feasibility of long-term (1 month to 1 year) exploitation of saturated sodium-chloride and calcium-chloride lithium-bearing brines. Such operations can yield lithium production rates of 31.2 to 4.2 t per well.

Область исследования:
Geotechnical Engineering and Engineering Geology
Keywords:
lithium antarcticite tachhydrite saturated brines hydromineral raw materials phase diagrams TOUGH2-EWASG simulation
Go to volume 276

Funding

The work was carried out under the topic FWME-2024-0007 “Heat and Mass Transfer, Seismicity, and Mineral Alterations in Hydrothermal and Volcanic Systems: Thermo-Hydrodynamic-Geochemical-Geomechanical Modelling, Applications for Geothermal Resource Assessment and Prediction of Catastrophic Hydrothermal Events, Volcanic Eruptions, and Major Earthquakes” at the IVS FEB RAS. The study used resources provided by the Shared Research Facilities Centre “Kamchatka Centre for Elemental, Mineral, and Isotopic Analysis”.

References

  1. Yurchik I.I. Lithium in brines of the Siberian salt basin. 20th International Scientific Congress Interexpo GEO-Siberia: Materialy Mezhdunarodnoi nauchnoi konferentsii “Nedropolzovanie. Gornoe delo. Napravleniya i tekhnologii poiska, razvedki i razrabotki mestorozhdenii poleznykh iskopaemykh. Ekonomika. Geoekologiya”, 15-17 maya 2024, Novosibirsk, Rossiya. Novosibirsk: Sibirskii gosudarstvennyi universitet geosistem i tekhnologii, 2024. Vol. 2. N 1, p. 247-250 (in Russian). DOI: 10.33764/2618-981X-2024-2-1-247-250
  2. Mohunov V.Yu., Gulyi N.I. Analysis of trends in modern technologies for the extraction of lithium from hydromineral raw materials. Nedropolzovanie XXI vek. 2022. N 4 (96), p. 38-50 (in Russian).
  3. Patrikeev P.A., Akhiyarov A.V., Kirsanov A.M. et al. Forecast of oil and gas potential within the Kochechumsko-Markhinskaya petroleum promising zone of the Lena-Tunguska petroleum province, taking into account the complex geological section saturated with products of intrusive trap magmatism. Fiziko-tekhnicheskie problemy dobychi, transporta i pererabotki organicheskogo syrya v usloviyakh kholodnogo klimata: Sbornik trudov III Vserossiiskoi konferentsii, posvyashchennoi 25-letiyu Instituta problem nefti i gaza SO RAN, 10-13 sentyabrya 2024, Yakutsk, Rossiya. Kirov: Mezhregionalnyi tsentr innovatsionnykh tekhnologii v obrazovanii, 2024, p. 75-80 (in Russian). DOI: 10.24412/cl-37255-2024-1-75-80
  4. Donskaya T.V., Gladkochub D.P. Post-collisional magmatism of 1.88-1.84 Ga in the southern Siberian Craton: An overview. Precambrian Research. 2021. Vol. 367. N 106447. DOI: 10.1016/j.precamres.2021.106447
  5. Chang S.A., Balouch A., Abdullah. Analytical perspective of lithium extraction from brine waste: Analysis and current progress. Microchemical Journal. 2024. Vol. 200. N 110291. DOI: 10.1016/j.microc.2024.110291
  6. Popov G.V., Pashkevich R.I. Kinetics of ion exchange of lithium from solutions in static conditions. Bashkir Chemical Journal. 2018. Vol. 25. N 4, p. 46-49 (in Russian). DOI: 10.17122/bcj-2018-4-46-49
  7. Belova T.P., Ratchina T.I. Research of lithium sorption by KU-2-8 cation exchanger from model solutions simulating geothermal fluids in the dynamic mode. Journal of Mining Institute. 2020. Vol. 242, p. 197-201. DOI: 10.31897/PMI.2020.2.197
  8. Mends E.A., Chu P. Lithium extraction from unconventional aqueous resources – A review on recent technological development for seawater and geothermal brines. Journal of Environmental Chemical Engineering. 2023. Vol. 11. Iss. 5. N 110710. DOI: 10.1016/j.jece.2023.110710
  9. Suharyanto A., Rohmah M., Lalasari L.H., Mubarok M.Z. Lithium adsorption behaviour from Ciseeng geothermal brine water onto Amberlite resin. AIP Conference Proceedings. 2024. Vol. 3003. Iss. 1. N 020113. DOI: 10.1063/5.0186324
  10. Ryabtsev A.D., Kotsupalo N.P., Menzheres L.T. et al. Implementation of an Integrated Technology for Processing Brines of the Calcium Chloride Type to Obtain a Bromineless Lithium Concentrate. Theoretical Foundations of Chemical Engineering. 2023. Vol. 24. N 9, p. 337-342. DOI: 10.1134/S0040579524700635
  11. Kotsupalo N.P., Nemudry A.P. Development of Processing Technology for Mining and Hydromineral Lithium-Containing Raw Materials. Scientific Basis for the Production of Selective Lithium Sorbent. Chemistry for Sustainable Development. 2021. Vol. 29. N 3, p. 346-353. DOI: 10.15372/KhUR2021312
  12. Bofill L., Bozetti G., Schäfer G. et al. Quantitative facies analysis of a fluvio-aeolian system: Lower Triassic Buntsandstein Group, eastern France. Sedimentary Geology. 2024. Vol. 465. N 106634. DOI: 10.1016/j.sedgeo.2024.106634
  13. Ashadi A.L., Martinez Y., Kirmizakis P. et al. First High-Power CSEM Field Test in Saudi Arabia. Minerals. 2022. Vol. 12. Iss. 10. N 1236. DOI: 10.3390/min12101236
  14. Herrmann L., Ehrenberg H., Graczyk-Zajac M. et al. Lithium recovery from geothermal brine – an investigation into the desorption of lithium ions using manganese oxide adsorbents. Energy Advances. 2022. Vol. 1. Iss. 11, p. 877-885. DOI: 10.1039/d2ya00099g
  15. Glen J.M.G., Earney T.E. New high resolution airborne geophysical surveys in Nevada and California for geothermal and mineral resource studies. Geothermal Resources Council Transactions. 2023. Vol. 47, p. 1738-1762.
  16. Kuzmenko P.S., Mikheeva E.D. Mineral resource base of deposits of lithium-bearing clays and tuffs. Nedropolzovanie XXI vek. 2024. N 2 (103), p. 14-19 (in Russian).
  17. Antipin V.S., Kuzmin M.I., Odgerel D. et al. Rare-Metal Li–F Granites in the Late Paleozoic, Early Mesozoic, and Late Mesozoic Magmatic Areas of Central Asia. Russian Geology and Geophysics. 2022. Vol. 63. N 7, p. 772-788.DOI: 10.2113/RGG20214409
  18. Alekseev V.I. Tectonic and magmatic factors of Li-F granites localization of the East of Russia. Journal of Mining Institute. 2021. Vol. 248, p. 173-179. DOI: 10.31897/PMI.2021.2.1
  19. Alekseev V.I. Type intrusive series of the Far East belt of lithium-fluoric granites and its ore content. Journal of Mining Institute. 2022. Vol. 255, p. 377-392. DOI: 10.31897/PMI.2022.21
  20. Alam M.A., Muñoz A. A critical evaluation of the role of a geothermal system in lithium enrichment of brines in the salt flats: A case study from Laguna Verde in the Atacama Region of Chile. Geothermics. 2024. Vol. 119. N 102970. DOI: 10.1016/j.geothermics.2024.102970
  21. Sudarikov C.M., Zmievskii M.V. Geochemistry of ore-forming hydrothermal fluids of the World ocean. Journal of Mining Institute. 2015. Vol. 215. p. 5-15 (in Russian).
  22. Fei Xue, Hongbing Tan, Xiying Zhang et al. Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Tibetan Plateau. Geoscience Frontiers. 2024. Vol. 15. Iss. 2. N 101768. DOI: 10.1016/j.gsf.2023.101768
  23. Zheng Hao, Zhao HaiXiang, Tan HongBing. Calculation of ore-forming material balance and material source of Li-B rich brines in Mami Co Lake, Tibet. Mineral Deposits. 2023. Vol. 42. N 2, p. 411-424. DOI: 10.16111/j.0258-7106.2023.02.011
  24. Kiryukhin A.V., Nazhalova I.N., Zhuravlev N.B. Hot water-methane reservoirs at southwest foothills of Koryaksky volcano, Kamchatka. Geothermics. 2022. Vol. 106. N 102552. DOI: 10.1016/j.geothermics.2022.102552
  25. Dugamin E.J.M., Cathelineau M., Boiron M.C. et al. Lithium enrichment processes in sedimentary formation waters. Chemical Geology. 2023. Vol. 635. N 121626. DOI: 10.1016/j.chemgeo.2023.121626
  26. Al-Jawad J., Ford J., Petavratzi E., Hughes A. Understanding the spatial variation in lithium concentration of high Andean Salars using diagnostic factors. Science of the Total Environment. 2024. Vol. 906. N 167647. DOI: 10.1016/j.scitotenv.2023.167647
  27. Baines A., Broadley M., Gines J. et al. Bare-earth satellite imagery and the search for hidden lithium-rich brines: An example from the Lithium Triangle in South America. The International Meeting for Applied Geoscience and Energy: Expanded Abstracts 2023 Technical Program, 28 August – 1 September 2023, Houston, TX, USA. Society of Exploration Geophysicists, 2023, p. 1136-1140. DOI: 10.1190/image2023-3909965.1
  28. Lattus J.M., Barber M.E., Skoković D. et al. Spaceborne Radars for Mapping Surface and Subsurface Salt Pan Configuration: A Case Study of the Pozuelos Salt Flat in Northern Argentina. Remote Sensing. 2024. Vol. 16. Iss. 8. N 1411. DOI: 10.3390/rs16081411
  29. Jiang Guo, Zhou Kefa, Wang Jinlin et al. Identification of lithium-beryllium granitic pegmatites based on deep learning. Earth Science Frontiers. 2023. Vol. 30. N 5, p. 185-186. DOI: 10.13745/j.esf.sf.2023.5.20
  30. Rossi C., Bateson L., Bayaraa M. et al. Framework for Remote Sensing and Modelling of Lithium-Brine Deposit Formation. Remote Sensing. 2022. Vol. 14. Iss. 6. N 1383. DOI: 10.3390/rs14061383
  31. Agafonov Yu.A., Alekseev S.V., Alekseeva L.P. et al. Manifestations of lithium brine and gas and abnormally high reservoir pressures in the south of the Siberian platform (fluid-geodynamic interpretation of geological, geophysical and geofield data; forecast of mining and geological conditions, innovative approaches and solutions in drilling and development of Kovykta Gas Condensate Field). In 2 vol. Vol. 1. Obzor problemy bureniya skvazhin v usloviyakh AVPD i vysokodebitnykh fontannykh pritokov redkometalnykh rassolov. Geologo-strukturnaya pozitsiya i stroenie Kovyktinskogo GKM. Gidrogeologiya i minerageniya kontsentrirovannykh rassolov. Stroenie mezhsolevykh prirodnykh rezervuarov osadochnogo chekhla galogenno-karbonatnogo kembriya. Polikomponentnye promyshlennye rassoly glubokikh gorizontov chekhla kak kompleksnoe gidromineralnoe syre. Tekhnologii pererabotki rassolov. Irkutsk: Irkutskii natsionalnyi issledovatelskii tekhnicheskii universitet, 2022, p. 302 (in Russian).
  32. Melentiev G.B., Shevchuk R.M., Delitsyn L.M. et al. Priority mineral resources and “critical” materials of Russia for production of lithium-ion batteries. Proceedings of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences. “Economic Sciences” series. 2023. N 3 (61), p. 59-70 (in Russian). DOI: 10.19110/1994-5655-2023-3-59-70
  33. Alexeev S.V., Alexeeva L.P., Vakhromeev A.G. Brines of the Siberian platform (Russia): Geochemistry and processing prospects. Applied Geochemistry. 2020. Vol. 117. N 104588. DOI: 10.1016/j.apgeochem.2020.104588
  34. Syrkov A.G., Prokopchuk N.R., Vorobiev A.G., Brichkin V.N. Academician N.S.Kurnakov as the founder of physico-chemical analysis – the scientific base for the development of new metal alloys and materials. Tsvetnye metally. 2021. N 1, p. 77-83 (in Russian). DOI: 10.17580/tsm.2021.01.09
  35. Soliev L., Jumaev M.T. Divarent equilibriumin multi-component systems. Chemical Journal of Kazakhstan. 2021. N 4 (76), p. 59-71 (in Russian). DOI: 10.51580/2021-1/2710-1185.49
  36. Khamrakulov Z.A., Askarova M.K., Tukhtaev S. Solubility of components in the systems MgCl2–CaCl2–H2O and (48.2% CaCl2 + 51.8% MgCl2)–NaClO3–H2O. Russian Journal of Inorganic Chemistry. 2015. Vol. 60. N 10, p. 1286-1291. DOI: 10.1134/S0036023615080100
  37. Vakhromeev A.G., Smirnov A.S., Sverkunov S.A. et al. Technological variants of developing lithium-bearing deposits of hard-of-recover inter-salt brine-bearing formations by high-pressure fluid system. Construction of oil and gas wells on land and sea. 2025. N 6 (390), p. 5-13 (in Russian).
  38. Feng Liu, Gui-ling Wang, Wei Zhang et al. Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China. Journal of Groundwater Science and Engineering. 2020. Vol. 8. N 4, p. 328-337. DOI: 10.19637/j.cnki.2305-7068.2020.04.003
  39. Pruess K., Oldenburg C., Moridis G. TOUGH2 User’s Guide, Version 2.0. Ernest Orlando Lawrence Berkley National Laboratory, 1999. Report N LBNL-43134, p. 204. DOI: 10.2172/751729
  40. Toporkova E.V., Konkin V.V., Lashkin N.E., Zaitsev K.A. Improving the technology of oil treatment at a fault-line oil field. Akademicheskii zhurnal Zapadnoi Sibiri. 2015. Vol. 11. N 5 (60), p. 35-36 (in Russian).
  41. Gasumov R.A. Causes of Fluid Entry Absence When Developing Wells of Small Deposits (on the example of Khadum-Batalpashinsky horizon). Journal of Mining Institute. 2018. Vol. 234, p. 630-636. DOI: 10.31897/PMI.2018.6.630
  42. Grigoriev B.S., Eliseev A.A., Pogarskaya T.A., Toropov E.E. Mathematical Modeling of Rock Crushing and Multiphase Flow of Drilling Fluid in Well Drilling. Journal of Mining Institute. 2019. Vol. 235, p. 16-23. DOI: 10.31897/PMI.2019.1.16
  43. Rogov E.A. Study of the well near-bottomhole zone permeability during treatment by process fluids. Journal of Mining Institute. 2020. Vol. 242, p. 169-173. DOI: 10.31897/PMI.2020.2.169
  44. Serbin D.V., Dmitriev A.N. Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter. Journal of Mining Institute. 2022. Vol. 257, p. 833-842. DOI: 10.31897/PMI.2022.82
  45. Artemenkov V.Y., Erehinskiy B.A., Zariaev I.A. Application of insulated lift pipes for oil and gas extraction. Pipeline transport: Theory and practice. 2017. N 2 (60), p. 20-23 (in Russian).
  46. Grishin M.S., Galeev A.R. Study of a combined technology for wellbore isolation in permafrost intervals. Problemy razrabotki mestorozhdenii uglevodorodnykh i rudnykh poleznykh iskopaemykh. 2023. Vol. 1, p. 154-159 (in Russian).
  47. Poskonina E.A., Kurchatova A.N. Determination of the minimal thermocase length depending on well spacing. PROneft. Professionals about Oil. 2022. N 2 (12), p. 66-70 (in Russian). DOI: 10.24887/2587-7399-2019-2-66-70
  48. Badanina Yu.V., Komkov M.A., Bochkarev S.V., Pavlovskaya K.V. Establishment of tubing with high-performance composite thermal barrier coating for steam-heat processing wells. Fundamental Research. 2016. N 11, p. 461-466 (in Russian).

Similar articles

Prediction of the limit state and dilatancy of rocks around mine workings
2025 Anatolii G. Protosenya, Maksim A. Karasev, Nikita A. Belyakov, Pavel K. Tulin
On the need to refine triaxial testing methods for investigating the mechanical behaviour of salt rocks and salt-based geomaterials
2025 Jauheni Ja. Kazlouski, Michael A. Zhuravkov, Sergei I. Bogdan
Recent advances in petrophysical properties, mechanical behavior and durability of calcarenite rocks
2025 Gioacchino F. Andriani
Granulometry within the kinematic theory of open system transformation
2025 Igor A. Melnik
Gold sorption on modified saponite
2025 Valentin A. Chanturiya, Vladimir G. Minenko, Andrei L. Samusev
Diamond polygenicity from Carnian deposits of the Bulkur anticline of the northeast Siberian platform
2025 Alla M. Logvinova, Sargylana S. Ugapeva, Evgenii I. Nikolenko, Aleksei O. Serebriannikov, Valentin P. Afanasev